Post

Computed Pattern - Efficiently Managing Data Computations

Computed Pattern - Efficiently Managing Data Computations

Computed Pattern

The Computed Pattern involves precomputing values and storing the results to optimize performance and reduce CPU workload. This approach is particularly beneficial for applications with high read-to-write ratios, enhancing query speed and system scalability.

graph LR
    subgraph reviewData["📊 Review Data"]
        subgraph reviews[" "]
         review1["⭐ Review 1: 5 stars"]
         review2["⭐ Review 2: 4 stars"]
         review3["⭐ Review 3: 3 stars"]
        end
        style reviews stroke-width:0px
    end
    subgraph computationProcess["🧮 Computation Process"]
        avgRating["fa:fa-calculator Calculate Average"]
        totalReviews["fa:fa-list-ol Count Reviews"]
    end
    subgraph productData["📦 Product Data"]
        subgraph computed
            storedAvg["fa:fa-star Avg Rating: 4"]
            storedCount["fa:fa-hashtag Review Count: 3"]
        end
        style computed fill:#bff,stroke:#333,stroke-width:2px
    end

    reviewData -->  computationProcess
    avgRating --> |"Store"| storedAvg
    totalReviews --> |"Store"| storedCount


Applying the Computed Pattern

Original Data Structure:

In an e-commerce platform, each product can receive multiple ratings from users. Storing and recalculating the average rating on-the-fly for each view can be resource-intensive.

1
2
3
4
5
6
7
8
9
{
  "_id": ObjectId("507f1f77bcf86cd799439011"),
  "product_name": "Wireless Mouse",
  "reviews": [
    {"user": "user01", "rating": 5, "date": ISODate("2024-08-01")},
    {"user": "user02", "rating": 4, "date": ISODate("2024-08-02")},
    {"user": "user03", "rating": 3, "date": ISODate("2024-08-03")}
  ]
}

Computed Data Structure:

By applying the Computed Pattern, we precompute the average rating and total review count, storing them in the product document.

graph TD
    subgraph productDocument["📄 Product Document"]
        productInfo["fa:fa-info-circle Product Info"]
        computedData["fa:fa-cogs Computed Data"]
        reviewsList["fa:fa-list Reviews List"]
    end
    productInfo --> |"contains"| computedData
    productInfo --> |"contains"| reviewsList
    computedData --> avgRating["fa:fa-star Avg Rating: 4"]
    computedData --> totalReviews["fa:fa-hashtag Total Reviews: 3"]
    reviewsList --> review1["fa:fa-comment Review 1"]
    reviewsList --> review2["fa:fa-comment Review 2"]
    reviewsList --> review3["fa:fa-comment Review 3"]

   
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
  "_id": ObjectId("507f191e810c19729de860ea"),
  "product_name": "Wireless Mouse",
  "computed": {
    "average_rating": 4,
    "total_reviews": 3,
    "last_updated": ISODate("2024-08-04")
  },
  "reviews": [
    {"user": "user01", "rating": 5, "date": ISODate("2024-08-01")},
    {"user": "user02", "rating": 4, "date": ISODate("2024-08-02")},
    {"user": "user03", "rating": 3, "date": ISODate("2024-08-03")}
  ]
}

Benefits of the Computed Pattern

  • Optimized Performance: Precomputing values reduces the load on the CPU, leading to faster queries and better overall performance.
  • Scalability: Efficiently managing computation ensures the system can scale without significant performance degradation.
  • Flexibility: Aggregated data can be recomputed as needed without altering the source data.
  • Real-time Analytics: Enables quick access to important metrics without complex aggregation queries.

Mongoose Schema

If you’re using Mongoose with Node.js, you can define the schema as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
const mongoose = require('mongoose');
const { Schema } = mongoose;

const reviewSchema = new Schema({
  user: { type: String, required: true },
  rating: { type: Number, required: true, min: 1, max: 5 },
  date: { type: Date, default: Date.now }
});

const productSchema = new Schema({
  product_name: {
    type: String,
    required: true,
    index: true
  },
  computed: {
    average_rating: {
      type: Number,
      default: 0,
      min: 0,
      max: 5
    },
    total_reviews: {
      type: Number,
      default: 0,
      min: 0
    },
    last_updated: {
      type: Date,
      default: Date.now
    }
  },
  reviews: [reviewSchema]
});

productSchema.index({ 'computed.average_rating': -1 });

const Product = mongoose.model('Product', productSchema);

module.exports = { Product };

Computing Aggregated Data

To compute and update the average rating for a product:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
async function updateProductComputedData(productId) {
  const product = await Product.findById(productId);
  if (!product) {
    throw new Error('Product not found');
  }

  const totalRating = product.reviews.reduce((sum, review) => sum + review.rating, 0);
  const totalReviews = product.reviews.length;

  product.computed = {
    average_rating: totalReviews > 0 ? totalRating / totalReviews : 0,
    total_reviews: totalReviews,
    last_updated: new Date()
  };

  await product.save();
  return product;
}

// Usage
try {
  const updatedProduct = await updateProductComputedData('507f191e810c19729de860ea');
  console.log('Updated product:', updatedProduct);
} catch (error) {
  console.error('Error updating product:', error);
}

More Use Cases

Social Media Analytics

In social media platforms, precomputing engagement metrics can significantly improve performance.

1
2
3
4
5
6
7
8
9
10
11
12
{
  "_id": ObjectId("507f191e810c19729de860eb"),
  "post_content": "Check out this amazing sunset!",
  "author": "user123",
  "created_at": ISODate("2024-08-01T18:30:00Z"),
  "computed": {
    "likes_count": 1542,
    "comments_count": 89,
    "shares_count": 256,
    "last_updated": ISODate("2024-08-04T12:00:00Z")
  }
}

Content Recommendation Systems

For content platforms, precomputing user preferences and content popularity can enhance recommendation speed.

1
2
3
4
5
6
7
8
9
10
11
{
  "_id": ObjectId("507f191e810c19729de860ed"),
  "user_id": "user456",
  "computed": {
    "favorite_genres": ["Sci-Fi", "Thriller", "Documentary"],
    "average_watch_time": 65, // in minutes
    "content_completion_rate": 0.78,
    "recommended_content_ids": ["movie123", "series456", "docu789"],
    "last_updated": ISODate("2024-08-04T20:15:00Z")
  }
}

Financial Portfolio Analysis

For financial applications, precomputing portfolio performance metrics can provide quick insights.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
{
  "_id": ObjectId("507f191e810c19729de860ee"),
  "portfolio_id": "port789",
  "user_id": "investor101",
  "computed": {
    "total_value": 250000.00,
    "day_change_percentage": 0.025,
    "year_to_date_return": 0.11,
    "risk_score": 7,
    "sector_diversity_score": 0.8,
    "last_updated": ISODate("2024-08-04T22:00:00Z")
  },
  "holdings": [
    {"stock": "AAPL", "quantity": 100, "purchase_price": 150.00},
    {"stock": "GOOGL", "quantity": 50, "purchase_price": 2000.00},
    // ... more holdings
  ]
}

IoT Device Monitoring

For IoT applications, precomputing device health and performance metrics can aid in proactive maintenance.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
{
  "_id": ObjectId("507f191e810c19729de860ef"),
  "device_id": "smartlock001",
  "type": "Smart Lock",
  "computed": {
    "battery_level": 0.75,
    "avg_daily_operations": 24,
    "days_since_last_maintenance": 45,
    "firmware_up_to_date": true,
    "failure_probability": 0.02,
    "last_updated": ISODate("2024-08-04T23:45:00Z")
  },
  "operation_log": [
    {"timestamp": ISODate("2024-08-04T23:30:12Z"), "action": "unlock", "user": "resident1"},
    {"timestamp": ISODate("2024-08-04T23:40:18Z"), "action": "lock", "user": "resident1"},
    // ... more logs
  ]
}

Considerations

  • Application Logic: Ensure that your application logic accounts for the timing and frequency of computations. Consider using database triggers or scheduled jobs for updates.
  • Data Consistency: Maintain consistency between source data and computed results. Implement error handling and retry mechanisms for failed updates.

Summary

The Computed Pattern efficiently handles repeated data computations by precomputing values and storing the results. This approach optimizes performance and scalability, making it ideal for applications with high read-to-write ratios and the need for quick access to aggregated data.

Keywords To Remember

graph LR
    preCalculation["fa:fa-calculator Pre-Calculation"] --> computedPattern["🖥️  Computed Pattern"]
    timeSeriesData["fa:fa-clock Time Series Data"] --> bucketPattern["fa:fa-bucket Bucket Pattern"]
    overflow["fa:fa-exclamation-circle Overflow"] --> outlierPattern["fa:fa-exclamation-triangle Outlier Pattern"]
    keyValue["fa:fa-key Key-Value"] --> attributePattern["fa:fa-tags Attribute Pattern"]

References

This post is licensed under CC BY 4.0 by the author.