Post

MERN - MongoDB Fundamental

MERN - MongoDB Fundamental

MongoDB Architecture

MongoDB is a popular NoSQL database designed for high performance, high availability, and easy scalability. It stores data in flexible, JSON-like documents, making it easy to work with structured, semi-structured, and unstructured data.

  • Database: A container for collections.
  • Collection: A group of MongoDB documents.
  • Document: A set of key-value pairs (similar to JSON objects).
graph 
  subgraph mongoDB["fa:fa-database MongoDB"]
    database["fa:fa-folder Database"]
    database --> collection["fa:fa-folder-open Collection"]
    collection --> document["fa:fa-file Document"]
  end

  style mongoDB stroke:#333,stroke-width:2px
  style database fill:#ccf,stroke:#f66,stroke-width:2px
  style collection fill:#add8e6,stroke:#333,stroke-width:2px
  style document fill:#9cf,stroke:#333,stroke-width:2px

CRUD Operations

CRUD stands for Create, Read, Update, and Delete. These are the basic operations for interacting with data in MongoDB.

graph
  subgraph crudOperations["fa:fa-tools CRUD Operations"]
    create["fa:fa-plus-circle Create"] --> read["fa:fa-eye Read"]
    read --> update["fa:fa-edit Update"]
    update --> delete["fa:fa-trash Delete"]
  end

  style crudOperations stroke:#333,stroke-width:2px
  style create fill:#ccf,stroke:#f66,stroke-width:2px
  style read fill:#add8e6,stroke:#333,stroke-width:2px
  style update fill:#9cf,stroke:#333,stroke-width:2px
  style delete fill:#faa,stroke:#333,stroke-width:2px

Create

To insert a new document into a collection, you use the insertOne() or insertMany() methods.

insertOne

1
db.collection('users').insertOne({ name: 'Alice', age: 25 });

Auto-Generated _id Field If you don’t specify an _id field, MongoDB automatically generates a unique identifier for each document. To specify your own _id value, you can include it in the document.

1
db.collection('users').insertOne({ _id: 1, name: 'Alice', age: 25 });

Make sure to handle duplicate _id values to avoid conflicts.

insertMany

To insert multiple documents, you can use the insertMany() method.

1
2
3
4
db.collection('users').insertMany([
  { name: 'Alice', age: 25 },
  { name: 'Bob', age: 30 }
]);

If one of the documents fails to insert, the operation will be aborted unless you specify the ordered: false option.

For example if you have schema vadiation like this. Go to Schema Validation

1
2
3
4
5
6
7
8
9
10
11
12
db.createCollection('users', {
  validator: {
    $jsonSchema: {
      bsonType: 'object',
      required: ['name', 'age'],
      properties: {
        name: { bsonType: 'string' },
        age: { bsonType: 'int' }
      }
    }
  }
});
1
2
3
4
5
db.collection('users').insertMany([
  { name: 'Alice', age: 25 },
  { name: 'Bob', age: 30 },
  { name: 'Charlie' } // missing age field
], { ordered: false });

Third document will be ignored and first two will be inserted.

The result would be

1
2
3
4
5
6
7
8
{
  acknowledged: true,
  insertedIds: {
    '0': ObjectId("..."),  // ID for Alice
    '1': ObjectId("...")   // ID for Bob
  }
}

Read

To read documents from a collection, you use the find() method. The find() method retrives multiple documents and returns a cursor which can be iterated to access the documents.

find

1
const cursor = db.collection('users').find({ age: { $gte: 18 } });

In Node.js, you can convert the cursor to an array using the toArray() method.

1
2
const docs = await cursor.toArray();
console.log(docs)

Result:

1
2
3
4
[
  { "_id": 1, "name": "Alice", "age": 25 },
  { "_id": 2, "name": "Bob", "age": 30 }
]

findOne

To retrieve a single document, you can use the findOne() method.

1
db.collection('users').findOne({ name: 'Alice' });

Result:

1
{ "_id": 1, "name": "Alice", "age": 25 }

Projection

You can specify which fields to include or exclude in the result using the projection parameter.

1
db.collection('users').find({}, { projection: { name: 1, age: 1 } });

Result:

1
2
3
4
[
  { "_id": 1, "name": "Alice", "age": 25 },
  { "_id": 2, "name": "Bob", "age": 30 }
]

Using projection is a critical practice, especially when working with large collections. It reduces the amount of data transferred over the network and improves query performance. It also prevent unintentional exposure of sensitive data.

Update

To update existing documents, you use the updateOne() or updateMany() methods.

1
2
3
db.collection('users').updateOne({ name: 'Alice' }, { $set: { age: 26 } });

db.collection('users').updateMany({ city: 'New York' }, { $set: { city: 'San Francisco' } });

Result Object

1
2
3
4
5
6
7
{
  "acknowledged": true,
  "matchedCount": 5,
  "modifiedCount": 5,
  "upsertedId": null,
  "upsertedCount": 0
}

Base on the result object you can return proper response.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
const result = await db.collection('users').updateOne(
  { _id: userId },
  { $set: { age: 30 } }
);

if (result.matchedCount === 0) {
  return { success: false, message: 'No matching document found' };
}

if (result.modifiedCount === 0) {
  return { success: true, message: 'Document already up-to-date' };
}

return { success: true, message: 'Document updated successfully' };

Upsert

If you want to insert a new document when no matching document is found, you can use the upsert option.

1
2
3
4
5
6
db.collection('users').updateOne(
  { name: 'Alice' },
  { $set: { age: 26 }
  },
  { upsert: true }
);

Result Object

1
2
3
4
5
6
7
{
  "acknowledged": true,
  "matchedCount": 1,
  "modifiedCount": 1,
  "upsertedId": ObjectId("..."),
  "upsertedCount": 1
}

findOneAndUpdate

This method is a combination of findOne() and updateOne() as atomic operation. Atomic operation are operations that are performed as a single unit of work. This helps to prevent race conditions and ensure data consistency.

1
2
3
4
5
6
// Update or create a user profile
db.users.findOneAndUpdate(
    { email: "alice@example.com" },
    { $set: { age: 26 } },
    { returnDocument: 'after' }
);

Result Object

returnDocument can be ‘before’ or ‘after’ to return the document before or after the update.

1
2
3
4
5
6
7
8
9
10
11
12
13
{
    "value": {
        "_id": ObjectId("5f7d3b1c8e1f9a1c9c8e1f9a"),
        "email": "alice@example.com",
        "age": 26,
        "name": "Alice"
    },
    "lastErrorObject": {
        "updatedExisting": true,
        "n": 1
    },
    "ok": 1
}

Update Operators


graph LR
  subgraph updateOperators["fa:fa-sync Update Operators"]
    set["fa:fa-equals $set"]
    inc["fa:fa-plus $inc"]
    mul["fa:fa-times $mul"]
    unset["fa:fa-trash-alt $unset"]
    rename["fa:fa-i-cursor $rename"]
  end

  style updateOperators stroke:#333,stroke-width:2px
  style set fill:#ccf,stroke:#f66,stroke-width:2px
  style inc fill:#add8e6,stroke:#333,stroke-width:2px
  style mul fill:#9cf,stroke:#333,stroke-width:2px
  style unset fill:#faa,stroke:#333,stroke-width:2px
  style rename fill:#f9f,stroke:#333,stroke-width:2px
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// $set operator to update fields
db.collection('users').updateOne({ name: 'Alice' }, { $set: { age: 26, city: 'New York' } });

// $set operator to update nested fields
db.collection('users').updateOne({ name: 'Alice' }, { $set: { 'address.city': 'New York' } });

// $inc operator to increment a field
db.collection('users').updateOne({ name: 'Alice' }, { $inc: { age: 1 } });

// $mul operator to multiply a field value
db.collection('users').updateOne({ name: 'Alice' }, { $mul: { age: 2 } });

// $unset operator to remove a field
db.collection('users').updateOne({ name: 'Alice' }, { $unset: { city: '' } });

// $rename operator to rename a field
db.collection('users').updateOne({ name: 'Alice' }, { $rename: { city: 'location' } });

Delete

To delete documents from a collection, you use the deleteOne() or deleteMany() methods.

1
2
3
db.collection('users').deleteOne({ name: 'Alice' }); // delete first matching document

db.collection('users').deleteMany({ city: 'New York' });

Result Object

1
2
3
4
{
  "acknowledged": true,
  "deletedCount": 1
}

Based on the result object you can return proper response.

1
2
3
4
5
6
7
const result = await db.collection('users').deleteOne({ _id: userId });

if (result.deletedCount === 0) {
  return { success: false, message: 'No matching document found' };
}

return { success: true, message: 'Document deleted successfully' };

Backup your data: Before deleting documents, make sure to back up your data to prevent accidental data loss.

Soft Delete: Instead of permanently deleting documents, you can mark them as deleted by adding a deletedAt field. This allows you to retain the data for auditing or recovery purposes.

1
2
3
4
db.collection('users').updateOne(
  { _id: userId },
  { $set: { deletedAt: new Date() } }
);

Precise Filter: When deleting documents, use a precise filter to avoid unintentionally deleting more documents than intended. You can use find() to preview the documents that will be deleted before running the delete operation.

Schema Validation

Model vs DAO Pattern

Sample Todo Model

Model Pattern

  • Encapsulates both data and behavior. This may include validation, business logic, and database operations. This can become “fat” but simpler implementation.
graph TD
    subgraph "Model Approach"
        A1[routes/todo.routes.js] --> B1[controllers/todo.controller.js]
        B1 --> C1[models/todo.model.js]
        C1 --> D1[config/database.js]
        style C1 fill:#f9f,stroke:#333
    end

This is sample of files structure for Model Pattern

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
src/
├── config/
│   └── database.js
│
├── models/
│   └── todo.model.js
│
├── controllers/
│   └── todo.controller.js
│
├── routes/
│   └── todo.routes.js
│
├── middleware/
│   └── auth.middleware.js
│
└── app.js

If the model becomes too complex, you can split it into multiple files or classes. For example, you can have separate files for validation, business logic, and database operations.

Data Configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// src/config/database.js
const { MongoClient } = require('mongodb');

const dbConfig = {
  url: process.env.MONGODB_URI || 'mongodb://localhost:27017',
  dbName: 'todoapp'
};

let db = null;

const connectDB = async () => {
  try {
    const client = await MongoClient.connect(dbConfig.url, {
      useUnifiedTopology: true
    });
    db = client.db(dbConfig.dbName);
    console.log('Connected to MongoDB successfully');
    return db;
  } catch (error) {
    console.error('MongoDB connection error:', error);
    process.exit(1);
  }
};

const getDB = () => {
  if (!db) {
    throw new Error('Database not initialized');
  }
  return db;
};

module.exports = { connectDB, getDB };

Model

The model file contains the data structure, validation, and database operations for a todo item. This contains both data and behavior related to todos.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// src/models/todo.model.js
onst { ObjectId } = require('mongodb');
const { getDB } = require('../config/database');

const COLLECTION_NAME = 'todos';

// Validation functions
const validateTodoData = (todoData) => {
  const errors = [];

  if (!todoData.title) {
    errors.push('Title is required');
  } else if (todoData.title.length < 3) {
    errors.push('Title must be at least 3 characters long');
  }

  if (todoData.status && !['pending', 'in-progress', 'completed'].includes(todoData.status)) {
    errors.push('Invalid status. Must be pending, in-progress, or completed');
  }

  if (todoData.dueDate && new Date(todoData.dueDate) < new Date()) {
    errors.push('Due date cannot be in the past');
  }

  if (todoData.priority && !['low', 'medium', 'high'].includes(todoData.priority)) {
    errors.push('Invalid priority. Must be low, medium, or high');
  }

  return errors;
};

const todoModel = {
  async create(todoData) {
    const errors = validateTodoData(todoData);
    if (errors.length > 0) {
      throw new Error(`Validation failed: ${errors.join(', ')}`);
    }

    const db = getDB();
    const todo = {
      ...todoData,
      title: todoData.title.trim(),
      status: todoData.status || 'pending',
      priority: todoData.priority || 'medium',
      createdAt: new Date(),
      updatedAt: new Date(),
      completedAt: null
    };

    const result = await db.collection(COLLECTION_NAME).insertOne(todo);
    return { ...todo, _id: result.insertedId };
  },

  async findById(id) {
    if (!ObjectId.isValid(id)) {
      throw new Error('Invalid todo ID');
    }

    const db = getDB();
    const todo = await db.collection(COLLECTION_NAME).findOne({ 
      _id: new ObjectId(id) 
    });

    if (!todo) {
      throw new Error('Todo not found');
    }

    return todo;
  },

  async find(query = {}, options = {}) {
    const db = getDB();
    const { 
      page = 1, 
      limit = 10,
      sortBy = 'createdAt',
      sortOrder = -1
    } = options;

    if (page < 1 || limit < 1) {
      throw new Error('Invalid pagination parameters');
    }

    const skip = (page - 1) * limit;
    const sortOptions = { [sortBy]: sortOrder };

    // Apply filters
    const filters = { ...query };
    if (filters.priority) {
      if (!['low', 'medium', 'high'].includes(filters.priority)) {
        throw new Error('Invalid priority filter');
      }
    }
    if (filters.status) {
      if (!['pending', 'in-progress', 'completed'].includes(filters.status)) {
        throw new Error('Invalid status filter');
      }
    }

    const [todos, totalCount] = await Promise.all([
      db.collection(COLLECTION_NAME)
        .find(filters)
        .sort(sortOptions)
        .skip(skip)
        .limit(limit)
        .toArray(),
      db.collection(COLLECTION_NAME)
        .countDocuments(filters)
    ]);

    return {
      todos,
      pagination: {
        total: totalCount,
        page,
        limit,
        pages: Math.ceil(totalCount / limit)
      }
    };
  },

  async update(id, updateData) {
    if (!ObjectId.isValid(id)) {
      throw new Error('Invalid todo ID');
    }

    const errors = validateTodoData(updateData);
    if (errors.length > 0) {
      throw new Error(`Validation failed: ${errors.join(', ')}`);
    }

    const db = getDB();
    const existingTodo = await this.findById(id);

    // Business logic for status changes
    if (updateData.status === 'completed' && existingTodo.status !== 'completed') {
      updateData.completedAt = new Date();
    }
    if (updateData.status && updateData.status !== 'completed') {
      updateData.completedAt = null;
    }

    const result = await db.collection(COLLECTION_NAME).findOneAndUpdate(
      { _id: new ObjectId(id) },
      { 
        $set: {
          ...updateData,
          updatedAt: new Date()
        }
      },
      { returnDocument: 'after' }
    );

    if (!result.value) {
      throw new Error('Todo not found');
    }

    return result.value;
  },

  async delete(id) {
    if (!ObjectId.isValid(id)) {
      throw new Error('Invalid todo ID');
    }

    const db = getDB();
    const result = await db.collection(COLLECTION_NAME).deleteOne({
      _id: new ObjectId(id)
    });

    if (result.deletedCount === 0) {
      throw new Error('Todo not found');
    }

    return true;
  },

  // Additional business logic methods
  async markAsComplete(id) {
    return await this.update(id, { 
      status: 'completed'
    });
  },

  async findOverdue() {
    const db = getDB();
    return await db.collection(COLLECTION_NAME).find({
      dueDate: { $lt: new Date() },
      status: { $ne: 'completed' }
    }).toArray();
  }
};

Sample Todo DAO

DAO Pattern

  • Data Access logic is separated from business logic.
  • Service layer for business logic and DAO layer for data access.
  • Better for testing by mocking the data access layer.
  • Better support dependency injection.
  • More complex implementation and code repetition.
graph TD  
    subgraph "DAO Pattern Approach"
        A2[routes/todo.routes.js] --> B2[controllers/todo.controller.js]
        B2 --> C2[services/todo.service.js]
        C2 --> D2[daos/todo.dao.js]
        D2 --> E2[models/todo.entity.js]
        D2 --> F2[config/database.js]
        style C2 fill:#f9f,stroke:#333
        style D2 fill:#f9f,stroke:#333
        style E2 fill:#f9f,stroke:#333
    end
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
src/
├── config/
│   └── database.js         # Database connection configuration
│
├── models/
│   └── todo.entity.js      # Data structure/schema definition
│
├── daos/
│   └── todo.dao.js         # Data Access Object - handles database operations
│
├── services/
│   └── todo.service.js     # Business logic layer
│
├── controllers/
│   └── todo.controller.js  # Request handling & response formatting
│
├── routes/
│   └── todo.routes.js      # Route definitions
│
└── app.js                  # Application entry point

Database Configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// src/config/database.js
const { MongoClient } = require('mongodb');

class Database {
  constructor(config) {
    this.config = {
      url: config.url || process.env.MONGODB_URI || 'mongodb://localhost:27017',
      dbName: config.dbName || process.env.DB_NAME || 'todoapp',
      options: {
        useUnifiedTopology: true,
        ...config.options
      }
    };
    this.client = null;
    this.db = null;
  }

  async connect() {
    try {
      this.client = await MongoClient.connect(this.config.url, this.config.options);
      this.db = this.client.db(this.config.dbName);
      console.log('Connected to MongoDB successfully');
      return this.db;
    } catch (error) {
      console.error('MongoDB connection error:', error);
      throw new DatabaseError('Failed to connect to database', error);
    }
  }

  async disconnect() {
    try {
      if (this.client) {
        await this.client.close();
        this.client = null;
        this.db = null;
        console.log('Disconnected from MongoDB');
      }
    } catch (error) {
      console.error('MongoDB disconnection error:', error);
      throw new DatabaseError('Failed to disconnect from database', error);
    }
  }

  getDB() {
    if (!this.db) {
      throw new DatabaseError('Database not initialized. Call connect() first.');
    }
    return this.db;
  }
}

Entity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// src/models/todo.entity.js
class Todo {
  static STATUS = {
    PENDING: 'pending',
    IN_PROGRESS: 'in-progress',
    COMPLETED: 'completed'
  };

  static PRIORITY = {
    LOW: 'low',
    MEDIUM: 'medium',
    HIGH: 'high'
  };

  constructor(data = {}) {
    this._id = data._id || null;
    this.title = data.title || '';
    this.description = data.description || '';
    this.status = data.status || Todo.STATUS.PENDING;
    this.priority = data.priority || Todo.PRIORITY.MEDIUM;
    this.dueDate = data.dueDate ? new Date(data.dueDate) : null;
    this.createdAt = data.createdAt ? new Date(data.createdAt) : new Date();
    this.updatedAt = data.updatedAt ? new Date(data.updatedAt) : new Date();
    this.completedAt = data.completedAt ? new Date(data.completedAt) : null;
    this.tags = Array.isArray(data.tags) ? [...data.tags] : [];
    this.assignedTo = data.assignedTo || null;
  }

  validate() {
    const errors = [];

    if (!this.title?.trim()) {
      errors.push('Title is required');
    } else if (this.title.trim().length < 3) {
      errors.push('Title must be at least 3 characters long');
    }

    if (this.status && !Object.values(Todo.STATUS).includes(this.status)) {
      errors.push(`Invalid status. Must be one of: ${Object.values(Todo.STATUS).join(', ')}`);
    }

    if (this.dueDate) {
      if (!(this.dueDate instanceof Date) || isNaN(this.dueDate.getTime())) {
        errors.push('Invalid due date format');
      } else if (this.dueDate < new Date()) {
        errors.push('Due date cannot be in the past');
      }
    }

    if (this.priority && !Object.values(Todo.PRIORITY).includes(this.priority)) {
      errors.push(`Invalid priority. Must be one of: ${Object.values(Todo.PRIORITY).join(', ')}`);
    }

    if (this.tags && !Array.isArray(this.tags)) {
      errors.push('Tags must be an array');
    }

    return errors;
  }

  isOverdue() {
    return this.dueDate && this.dueDate < new Date() && this.status !== Todo.STATUS.COMPLETED;
  }

  toJSON() {
    return {
      _id: this._id,
      title: this.title,
      description: this.description,
      status: this.status,
      priority: this.priority,
      dueDate: this.dueDate,
      createdAt: this.createdAt,
      updatedAt: this.updatedAt,
      completedAt: this.completedAt,
      tags: this.tags,
      assignedTo: this.assignedTo
    };
  }
}

Validation Errors Class

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// src/errors/index.js
class ValidationError extends Error {
  constructor(message) {
    super(message);
    this.name = 'ValidationError';
    this.status = 400;
  }
}

class DatabaseError extends Error {
  constructor(message, originalError = null) {
    super(message);
    this.name = 'DatabaseError';
    this.status = 500;
    this.originalError = originalError;
  }
}

class NotFoundError extends Error {
  constructor(message) {
    super(message);
    this.name = 'NotFoundError';
    this.status = 404;
  }
}

DAO

Class-Based with Constructor Injection

This style defines a BaseDAO class that provides a clean, reusable interface with methods like findOne, insertOne, and updateOne. Each DAO (like TodoDAO) extends BaseDAO, passing in a specific collection name

classDiagram
    class DatabaseError {
        +String message
        +Error originalError
        +constructor(message, error)
    }

    class BaseDAO {
        -Database db
        -Collection collection
        +constructor(db, collectionName)
        +findOne(filter) Promise~Document~
        +find(filter, options) Promise~Document[]~
        +insertOne(data) Promise~Result~
        +updateOne(filter, update, options) Promise~Result~
        +deleteOne(filter) Promise~Result~
    }

    class TodoDAO {
        +constructor(db)
        +findByStatus(status) Promise~Document[]~
        +findByPriority(priority) Promise~Document[]~
    }

    class UserDAO {
        +constructor(db)
        +findByEmail(email) Promise~Document~
        +findByUsername(username) Promise~Document~
    }


    BaseDAO <|-- TodoDAO : extends
    BaseDAO <|-- UserDAO : extends
    BaseDAO ..> DatabaseError : throws

Pros:

  • Clean and reusable: BaseDAO is a good foundation, especially if you have multiple DAOs that follow similar structures.
  • Constructor validation: Ensures db and collectionName are provided, helping catch issues early.
  • Readability and maintainability: The CRUD operations are well-encapsulated and can be reused easily across different DAOs by extending BaseDAO.

Cons:

  • More boilerplate code
  • Every DAO must extend BaseDAO, which might limit flexibility for cases where a DAO might need additional initialization or a unique structure.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// src/daos/base.dao.js
class BaseDAO {
  constructor(db, collectionName) {
    if (!db) {
      throw new Error('Database connection is required');
    }
    if (!collectionName) {
      throw new Error('Collection name is required');
    }
    this.db = db;
    this.collection = this.db.collection(collectionName);
  }

  async findOne(filter) {
    try {
      return await this.collection.findOne(filter);
    } catch (error) {
      throw new DatabaseError('Database query failed', error);
    }
  }

  async find(filter = {}, options = {}) {
    try {
      return await this.collection.find(filter, options).toArray();
    } catch (error) {
      throw new DatabaseError('Database query failed', error);
    }
  }

  async insertOne(data) {
    try {
      return await this.collection.insertOne(data);
    } catch (error) {
      throw new DatabaseError('Database insert failed', error);
    }
  }

  async updateOne(filter, update, options = {}) {
    try {
      return await this.collection.updateOne(filter, update, options);
    } catch (error) {
      throw new DatabaseError('Database update failed', error);
    }
  }

  async deleteOne(filter) {
    try {
      return await this.collection.deleteOne(filter);
    } catch (error) {
      throw new DatabaseError('Database delete failed', error);
    }
  }
}

// src/daos/todo.dao.js
class TodoDAO extends BaseDAO {
  constructor(db) {
    super(db, 'todos');
  }

  async create(todoData) {
    const todo = new Todo(todoData);
    const errors = todo.validate();
    
    if (errors.length > 0) {
      throw new ValidationError(errors.join(', '));
    }

    const todoToInsert = {
      ...todo.toJSON(),
      title: todo.title.trim(),
      createdAt: new Date(),
      updatedAt: new Date()
    };

    try {
      const result = await this.insertOne(todoToInsert);
      return new Todo({ ...todoToInsert, _id: result.insertedId });
    } catch (error) {
      throw new DatabaseError('Failed to create todo', error);
    }
  }

  async findById(id) {
    if (!ObjectId.isValid(id)) {
      throw new ValidationError('Invalid todo ID');
    }

    const todo = await this.findOne({ _id: new ObjectId(id) });
    
    if (!todo) {
      throw new NotFoundError('Todo not found');
    }

    return new Todo(todo);
  }

  async find(query = {}, options = {}) {
    const { 
      page = 1, 
      limit = 10,
      sortBy = 'createdAt',
      sortOrder = -1,
      status,
      priority,
      searchTerm,
      fromDate,
      toDate,
      tags
    } = options;

    if (page < 1 || limit < 1) {
      throw new ValidationError('Invalid pagination parameters');
    }

    const filter = this._buildFilter({
      ...query,
      status,
      priority,
      searchTerm,
      fromDate,
      toDate,
      tags
    });

    const skip = (page - 1) * limit;
    const sortOptions = { [sortBy]: sortOrder };

    try {
      const [todos, totalCount] = await Promise.all([
        this.collection
          .find(filter)
          .sort(sortOptions)
          .skip(skip)
          .limit(limit)
          .toArray(),
        this.collection.countDocuments(filter)
      ]);

      return {
        todos: todos.map(todo => new Todo(todo)),
        pagination: {
          total: totalCount,
          page,
          limit,
          pages: Math.ceil(totalCount / limit)
        }
      };
    } catch (error) {
      throw new DatabaseError('Failed to fetch todos', error);
    }
  }

  async update(id, updateData) {
    const existingTodo = await this.findById(id);
    
    const updatedTodo = new Todo({
      ...existingTodo,
      ...updateData,
      _id: existingTodo._id,
      updatedAt: new Date()
    });

    const errors = updatedTodo.validate();
    if (errors.length > 0) {
      throw new ValidationError(errors.join(', '));
    }

    const result = await this.updateOne(
      { _id: new ObjectId(id) },
      { $set: updatedTodo.toJSON() },
      { returnDocument: 'after' }
    );

    if (result.matchedCount === 0) {
      throw new NotFoundError('Todo not found');
    }

    return updatedTodo;
  }

  async delete(id) {
    if (!ObjectId.isValid(id)) {
      throw new ValidationError('Invalid todo ID');
    }

    const result = await this.deleteOne({ _id: new ObjectId(id) });

    if (result.deletedCount === 0) {
      throw new NotFoundError('Todo not found');
    }

    return true;
  }

  _buildFilter(options) {
    const filter = {};

    if (options.status) {
      if (!Object.values(Todo.STATUS).includes(options.status)) {
        throw new ValidationError('Invalid status filter');
      }
      filter.status = options.status;
    }

    if (options.priority) {
      if (!Object.values(Todo.PRIORITY).includes(options.priority)) {
        throw new ValidationError('Invalid priority filter');
      }
      filter.priority = options.priority;
    }

    if (options.searchTerm) {
      filter.$or = [
        { title: { $regex: options.searchTerm, $options: 'i' } },
        { description: { $regex: options.searchTerm, $options: 'i' } }
      ];
    }

    if (options.fromDate || options.toDate) {
      filter.dueDate = {};
      if (options.fromDate) {
        filter.dueDate.$gte = new Date(options.fromDate);
      }
      if (options.toDate) {
        filter.dueDate.$lte = new Date(options.toDate);
      }
    }

    if (options.tags && Array.isArray(options.tags)) {
      filter.tags = { $all: options.tags };
    }

    return filter;
  }
}

Static Method with Injected Connection

Simplified Usage: Static methods remove the need to instantiate the class, reducing memory overhead.

Testing Challenges: Static methods are less flexible with dependency injection, making mocks and tests trickier.

Limited Reusability: Static methods don’t support inheritance, so shared logic across DAOs is harder to centralize.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import { ObjectId } from 'mongodb';

let todos;

export default class TodoDAO {
  static async injectDB(conn) {
    if (todos) return;
    try {
      todos = await conn.db(process.env.DB_NAME).collection('todos');
    } catch (error) {
      console.error(`Unable to establish collection handles in TodoDAO: ${error}`);
    }
  }

  static async create(todoData) {
    // Initialize and validate the Todo, build the data object, and insert into the collection
  }

  static async findById(id) {
    // Validate ID, query by `_id`, throw `NotFoundError` if not found
  }

  static async find(query = {}, options = {}) {
    // Construct filter, pagination, and sort options, execute the find query with pagination
  }

  static async update(id, updateData) {
    // Fetch the todo, validate and update with `updateOne`
  }

  static async delete(id) {
    // Validate ID, delete by `_id`, and handle `NotFoundError`
  }

  static _buildFilter(options) {
    // Generate the filter object for queries based on status, priority, search terms, etc.
  }
}

Service

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// src/services/todo.service.js
class TodoService {
  constructor(todoDAO) {
    if (!todoDAO) {
      throw new Error('TodoDAO is required');
    }
    this.todoDAO = todoDAO;
  }

  async createTodo(todoData) {
    return await this.todoDAO.create(todoData);
  }

  async getTodoById(id) {
    return await this.todoDAO.findById(id);
  }

  async updateTodo(id, updateData) {
    return await this.todoDAO.update(id, updateData);
  }

  async deleteTodo(id) {
    return await this.todoDAO.delete(id);
  }

  async updateTodoStatus(id, status) {
    const todo = await this.todoDAO.findById(id);
    
    const updates = { 
      status,
      updatedAt: new Date()
    };
    
    if (status === Todo.STATUS.COMPLETED && todo.status !== Todo.STATUS.COMPLETED) {
      updates.completedAt = new Date();
    } else if (status !== Todo.STATUS.COMPLETED && todo.status === Todo.STATUS.COMPLETED) {
      updates.completedAt = null;
    }

    return await this.todoDAO.update(id, updates);
  }

  async findTodos(options = {}) {
    return await this.todoDAO.find({}, options);
  }

  async findOverdueTodos() {
    const now = new Date();
    return await this.todoDAO.find({
      dueDate: { $lt: now },
      status: { $ne: Todo.STATUS.COMPLETED }
    });
  }

  async findTodosByPriority(priority) {
    return await this.todoDAO.find({ priority });
  }

  async assignTodo(id, userId) {
    return await this.todoDAO.update(id, {
      assignedTo: userId,
      updatedAt: new Date()
    });
  }

  async addTags(id, tags) {
    const todo = await this.todoDAO.findById(id);
    const uniqueTags = [...new Set([...todo.tags, ...tags])];
    return await this.todoDAO.update(id, { tags: uniqueTags });
  }

  async removeTags(id, tags) {
    const todo = await this.todoDAO.findById(id);
    const updatedTags = todo.tags.filter(tag => !tags.includes(tag));
    return await this.todoDAO.update(id, { tags: updatedTags });
  }
}

Indexing

Indexing in MongoDB improves query performance by creating efficient data structures for faster data retrieval.

graph LR
  subgraph indexing["fa:fa-search Indexing"]
    singleField["fa:fa-file $singleField"]
    compound["fa:fa-layer-group $compound"]
    multikey["fa:fa-list $multikey"]
    text["fa:fa-font $text"]
  end

  style indexing stroke:#333,stroke-width:2px
  style singleField fill:#ccf,stroke:#f66,stroke-width:2px
  style compound fill:#add8e6,stroke:#333,stroke-width:2px
  style multikey fill:#9cf,stroke:#333,stroke-width:2px
  style text fill:#faa,stroke:#333,stroke-width:2px
  • Single Field Index: Index on a single field of a document.
  • Compound Index: Index on multiple fields.
  • Multikey Index: Index on array fields.
  • Text Index: Supports text search queries on string content.

Single Field Index

To create an index, you use the createIndex() method.

1
db.collection('users').createIndex({ name: 1 });

Compound Index

A compound index in MongoDB is an index on multiple fields in a document.

graph LR
  subgraph compoundIndex["fa:fa-layer-group Compound Index"]
    field1["fa:fa-file Field 1"]
    field2["fa:fa-file Field 2"]
    field3["fa:fa-file Field 3"]
  end

  style compoundIndex stroke:#333,stroke-width:2px
  style field1 fill:#ccf,stroke:#f66,stroke-width:2px
  style field2 fill:#add8e6,stroke:#333,stroke-width:2px
  style field3 fill:#9cf,stroke:#333,stroke-width:2px
1
db.collection('users').createIndex({ name: 1, age: 1, city: 1, country: 1, hobbies: 1 });

Prefixes of a compound index can be used to satisfy queries that match the index fields from left to right.

1
2
db.collection('users').find({ name: 'Alice', age: 25 });
db.collection('users').find({ name: 'Alice', age: 25, city: 'New York' });

Multikey Index

A multikey index in MongoDB is an index on an array field.

graph LR
  subgraph multikeyIndex["fa:fa-list Multikey Index"]
    arrayField["fa:fa-list Array Field"]
  end

  style multikeyIndex stroke:#333,stroke-width:2px
  style arrayField fill:#ccf,stroke:#f66,stroke-width:2px
1
db.collection('users').createIndex({ hobbies: 1 });

Limitations of Multikey Indexes

  • you cannot create a compound index if more than one field is an array.
1
db.collection('users').createIndex({ "hobbies": 1, "tags": 1 }); // Not allowed if both hobbies and tags are arrays

Text Index

Text indexes in MongoDB provide a way to perform text search queries on string content. Each collection can have at most one text index.

1
2
3
4
5
6
db.products.createIndex({ 
  name: "text", 
  description: "text", 
  tags: "text" 
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// Sample Data
db.products.insertMany([
  {
    name: "MacBook Pro 16-inch",
    description: "Powerful laptop for developers",
    tags: ["apple", "laptop", "computer"]
  },
  {
    name: "iPhone 15 Pro",
    description: "Latest smartphone with great camera",
    tags: ["apple", "smartphone", "mobile"]
  },
  {
    name: "Gaming Laptop ROG",
    description: "High-performance gaming laptop",
    tags: ["asus", "laptop", "gaming"]
  }
]);

Exact word matches

1
db.products.find({ $text: { $search: "laptop" }}); // Will find MacBook and ROG

Multiple words (OR)

1
2
3
// By default, multiple words are treated as logical OR
// Will find documents containing "laptop" or "gaming"
db.products.find({ $text: { $search: "laptop gaming" }});

Multiple Words (Logical AND)

1
2
3
// Using the plus sign to ensure both terms are present
// Will find documents containing both "laptop" and "gaming"
db.products.find({ $text: { $search: "+laptop +gaming" }});

Exact phrases

1
2
3
// Using double quotes to search for an exact phrase
// Will find documents containing the exact phrase "gaming laptop"
db.products.find({ $text: { $search: "\"gaming laptop\"" }});

Word exclusions db.products.find({ $text: { $search: “laptop -gaming” }}); // Laptops but not gaming ones

Case-insensitive matches

1
2
3
// Text search is case-insensitive by default
// Will find all documents containing "laptop" regardless of case
db.products.find({ $text: { $search: "LAPTOP" }});

Diacritic-insensitive

1
2
3
// Text search ignores diacritic marks by default
// Will match "cafe" and "café"
db.products.find({ $text: { $search: "café" }});

Partial Word Matches

1
2
// Searching for "lap" won't find "laptop"
db.products.find({ $text: { $search: "lap" }});

Wildcard Searches

1
2
// Wildcards are not supported in text search
db.products.find({ $text: { $search: "lap*" }});

Fuzzy Matching (Typos)

1
2
// Regular expressions cannot be used inside $text search
db.products.find({ $text: { $search: "/lap.*/" }});

Complex Boolean Expressions

1
2
// Nested boolean logic is not supported in $text search
db.products.find({ $text: { $search: "(laptop AND gaming) OR (smartphone AND camera)" }});

Case-Sensitive Searches

1
2
// Cannot perform case-sensitive searches using $text
db.products.find({ $text: { $search: "MacBook", caseSensitive: true }});

Atlas Search is a fully managed search service that allows you to build fast, relevant, full-text search capabilities on top of your MongoDB data. Compare to text indexes, Atlas Search provides more advanced features like faceted search, fuzzy matching, and relevance scoring.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//  Basic Atlas Search Setup
db.products.createSearchIndex({
  "mappings": {
    "dynamic": true,
    "fields": {
      "name": {
        "type": "string",
        "analyzer": "lucene.standard"
      },
      "description": {
        "type": "string",
        "analyzer": "lucene.english"
      }
    }
  }
});

Fuzzy Matching - Handles typos and misspellings

1
2
3
4
5
6
7
8
9
10
11
db.products.aggregate([
  {
    $search: {
      text: {
        query: "labtop",  // Will match "laptop"
        path: "name",
        fuzzy: { maxEdits: 1 }
      }
    }
  }
]);

Autocomplete - Real-time suggestions

1
2
3
4
5
6
7
8
9
10
db.products.aggregate([
  {
    $search: {
      autocomplete: {
        query: "mac",     // Will suggest "macbook", "machine", etc.
        path: "name"
      }
    }
  }
]);

Custom Scoring - Boost relevance

Can boost the relevance of certain documents based on specific criteria.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
db.products.aggregate([
  {
    $search: {
      compound: {
        must: [
          { text: { query: "laptop", path: "name" } }
        ],
        should: [
          {
            text: {
              query: "gaming",
              path: "category",
              score: { boost: { value: 2.0 } }  // Boost gaming laptops
            }
          }
        ]
      }
    }
  }
]);
  • Documents must contain “laptop” in the name field
  • Documents containing “gaming” in the description field are boosted.

Multi-language Support

1
2
3
4
5
6
7
8
9
10
11
db.products.aggregate([
  {
    $search: {
      text: {
        query: "ordinateur portable",  // French for "laptop"
        path: "description",
        analyzer: "lucene.french"
      }
    }
  }
]);

Faceted Search - Filter results

Faceted search allows users to filter search results based on categories, price ranges, and other attributes.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
db.products.aggregate([
  {
    $searchMeta: {
      facet: {
        operator: { text: { query: "laptop", path: "description" } },
        facets: {
          categories: { type: "string", path: "category" },
          priceRanges: {
            type: "number",
            path: "price",
            boundaries: [500, 1000, 2000]
          }
        }
      }
    }
  }
]);

**Facets:**
- categoryFacet: Groups results by the category field.
- priceFacet: Groups results into price ranges defined by the boundaries.


Trade-offs

Besides the benefits, Atlas Search also has some trade-offs compared to traditional text indexes.

  • Requires M10+ clusters
  • Additional cost
  • More complex setup
  • Higher resource usage

Array Operations

MongoDB supports a variety of array operations for working with arrays in documents.


graph 

  subgraph  
    each["fa:fa-list $each"]
    in["fa:fa-rectangle-list $in"]
    gt["fa:fa-angle-double-right $gt"]
    ne["fa:fa-angle-double-left $ne"]
  end


  subgraph     
    pull["fa:fa-trash-alt $pull"]
    pop["fa:fa-trash-alt $pop"]
    pullAll["fa:fa-trash-alt $pullAll"]
  end

    subgraph arrayOperations["fa:fa-list Array Operations"]
    elementMatch["fa:fa-equals $elementMatch"]
    push["fa:fa-plus $push"]
    set["fa:fa-hammer $set"]
    addToSet["fa:fa-plus-square $addToSet"]
  end


  style elementMatch fill:#add8e6, stroke:#333,stroke-width:2px
  style arrayOperations stroke:#333,stroke-width:2px
  style push fill:#ccf,stroke:#f66,stroke-width:2px
  style addToSet fill:#add8e6,stroke:#333,stroke-width:2px
  style each fill:#9cf,stroke:#333,stroke-width:2px
  style pull fill:#9cf,stroke:#333,stroke-width:2px
  style pop fill:#faa,stroke:#333,stroke-width:2px
  style pullAll fill:#ccf,stroke:#f66,stroke-width:2px
  style in fill:#add8e6,stroke:#333,stroke-width:2px
  style gt fill:#9cf,stroke:#333,stroke-width:2px
  style ne fill:#faa,stroke:#333,stroke-width:2px

Adding Elements to an Array

To add elements to an array in a document, you use the $push operator.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { hobbies: 'Reading' } });

Querying Arrays with $elemMatch

Given a collection of students with scores in different subjects:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{
  "_id": ObjectId("64d39a7a8b0e8c284a2c1234"),
  "name": "Alice",
  "scores": [
    { "subject": "Math", "score": 95 },
    { "subject": "English", "score": 88 }
  ]
},
{
  "_id": ObjectId("64d39a808b0e8c284a2c1235"),
  "name": "Bob",
  "scores": [
    { "subject": "Math", "score": 78 },
    { "subject": "English", "score": 92 }
  ]
}

Querying with $elemMatch:

To find students who specifically scored above 90 in Math, we need $elemMatch:

1
2
3
4
5
db.students.find({ 
  scores: { 
    $elemMatch: { subject: "Math", score: { $gt: 90 } } 
  } 
})

Result: This will return only Alice, as she is the only student with a score above 90 in the “Math” subject. $elemMatch ensures that all the conditions within the array element must be met.

Without $elemMatch - This will return both Alice and Bob, as they both have scores above 90 in different subjects and not necessarily in the “Math” subject.

graph 
  subgraph query["Query"]
    elemMatchMath["scores { $elemMatch: { subject: 'Math', score: { $gt: 90 } } }"]
  end

  subgraph documents["Documents"]
    alice["Alice: { scores: [{ subject: 'Math', score: 95 }, { subject: 'English', score: 88 }] }"]
    bob["Bob: { scores: [{ subject: 'Math', score: 78 }, { subject: 'English', score: 92 }] }"]
  end



  elemMatchMath -->  alice --> found["✅"]
  elemMatchMath --> bob 
  bob --> |With $elemMatch|notFound["❌"]
   bob --> |Without $elemMatch|found2["✅"]

  style found fill:#90EE90
  style notFound fill:#FFCCCC

Add Unique - $addToSet

The $addToSet operator in MongoDB is used to add elements to an array only if they are not already present. This prevents duplicate entries in the array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $addToSet: { hobbies: 'Reading' } });

Add Multiple $push and $each

The $push operator in MongoDB is used to add elements to an array. The $each modifier allows you to add multiple elements to the array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { hobbies: { $each: ['Reading', 'Swimming'] } } });

Add Sorted - $push and $sort

The $push operator in MongoDB is used to add elements to an array. The $sort modifier allows you to sort the array elements.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { scores: { $each: [85, 90], $sort: -1 } } });

Push and Sort Array of Objects by a specific field

1
2
3
4
5
6
7
8
9
10
11
12
13
14
db.collection('users').updateOne(
  { name: 'Alice' },
  {
    $push: {
      scores: {
        $each: [
          { score: 85, date: "2023-03-01" },
          { score: 90, date: "2023-04-01" }
        ],
        $sort: { date: -1 }
      }
    }
  }
);

Add Limited - $push and $slice

The $push operator in MongoDB is used to add elements to an array. The $slice modifier allows you to limit the number of elements in the array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { scores: { $each: [85, 90], $slice: -3 } } });

If Alice currently has a scores array like [70, 75, 80], this query will push 85 and 90, making it [70, 75, 80, 85, 90]. The $slice: -3 will then trim it to the last 3 elements, resulting in [80, 85, 90].

Removing Elements from an Array

To remove elements from an array in a document, you use the $pull operator.

1
2
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { hobbies: 'Reading' } });

Remove the first or last element - $pop

The $pop operator in MongoDB is used to remove the first or last element from an array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pop: { hobbies: 1 } });

Remove Multiple - $pullAll

The $pullAll operator in MongoDB is used to remove all occurrences of specified values from an array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pullAll: { hobbies: ['Reading', 'Swimming'] } });

Remove Multiple - $pull and $in

The $pull operator in MongoDB is used to remove elements from an array. The $in modifier allows you to specify multiple values to remove.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { hobbies: { $in: ['Reading', 'Swimming'] } } });

Remove Condition - $pull and $gt

The $pull operator in MongoDB is used to remove elements from an array. The $gt modifier allows you to specify a condition for removing elements.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { scores: { $gt: 85 } } });

Remove Not Equal - $pull and $ne

The $pull operator in MongoDB is used to remove elements from an array. The $ne modifier allows you to specify a condition for removing elements that are not equal to a value.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { scores: { $ne: 85 } } });

Update Condition - $set and $

The $set operator in MongoDB is used to update fields in a document. The $ positional operator allows you to update the first element that matches a condition in an array.

1
db.collection('users').updateOne({ name: 'Alice', 'scores.subject': 'Math' }, { $set: { 'scores.$.score': 90 } });

Update All - $[]

The $[] operator in MongoDB is used to update all elements in an array that match a condition.

1
db.collection('users').updateOne({ name: 'Alice' }, { $set: { 'scores.$[].score': 90 } });

To increment a field in all elements of an array, you can use the $[] operator with the $inc operator.

1
db.collection('users').updateOne({ name: 'Alice' }, { $inc: { 'scores.$[].score': 5 } });

Update Filtered - $[<identifier>]

The $[<identifier>] operator in MongoDB is used to update elements in an array that match a condition.

1
db.collection('users').updateOne({ name: 'Alice' }, { $set: { 'scores.$[elem].score': 90 } }, { arrayFilters: [{ 'elem.subject': 'Math' }] });

Aggregation

Aggregation operations process data records and return computed results. Aggregation allows you to perform complex data processing and transformation.

Aggregation Pipeline

The aggregation framework in MongoDB uses a pipeline approach, where multiple stages transform the documents.

1
2
3
4
5
db.collection('orders').aggregate([
  { $match: { status: 'A' } },
  { $group: { _id: '$cust_id', total: { $sum: '$amount' } } },
  { $sort: { total: -1 } }
]);
graph
  subgraph aggregation["fa:fa-chart-line Aggregation"]
    stage1["fa:fa-filter Match"] --> stage2["fa:fa-layer-group Group"]
    stage2 --> stage3["fa:fa-sort Sort"]
  end

  style aggregation stroke:#333,stroke-width:2px
  style stage1 fill:#ccf,stroke:#f66,stroke-width:2px
  style stage2 fill:#add8e6,stroke:#333,stroke-width:2px
  style stage3 fill:#9cf,stroke:#333,stroke-width:2px

Join Collections

MongoDB does not support joins like relational databases. Instead, you can use the $lookup operator to perform a left outer join between two collections.

1
2
3
4
5
6
7
8
9
10
db.collection('orders').aggregate([
  {
    $lookup: {
      from: 'customers',
      localField: 'cust_id',
      foreignField: '_id',
      as: 'customer'
    }
  }
]);

graph
  subgraph joinCollections["fa:fa-link Join Collections"]
    orders["fa:fa-folder-open Orders"]
    customers["fa:fa-folder-open Customers"]
  end

  orders --> |$lookup| customers

  style joinCollections stroke:#333,stroke-width:2px
  style orders fill:#ccf,stroke:#f66,stroke-width:2px
  style customers fill:#add8e6,stroke:#333,stroke-width:2px

Unwind Arrays

The $unwind operator in MongoDB is used to deconstruct an array field into multiple documents.

1
2
3
db.collection('orders').aggregate([
  { $unwind: '$items' }
]);

Unwind and Group

1
2
3
4
5
6
7
8
9
10
11
db.collection('orders').aggregate([
  { $unwind: '$items' },
  {
    $group: {
      _id: '$items.productId',
      totalQuantity: { $sum: '$items.quantity' },
      totalRevenue: { $sum: { $multiply: ['$items.price', '$items.quantity'] } },
      ordersCount: { $sum: 1 }
    }
  }
]);

Unwind Multiple Arrays

1
2
3
4
5
6
7
8
9
10
11
db.collection('restaurants').aggregate([
  { $unwind: '$categories' },
  { $unwind: '$reviews' },
  {
    $group: {
      _id: '$categories',
      averageRating: { $avg: '$reviews.rating' },
      reviewCount: { $sum: 1 }
    }
  }
]);

Group Documents

The $group operator in MongoDB is used to group documents by a specified key.

1
2
3
db.collection('orders').aggregate([
  { $group: { _id: '$cust_id', total: { $sum: '$amount' } } }
]);

Group and Count

1
2
3
db.collection('orders').aggregate([
  { $group: { _id: '$status', count: { $sum: 1 } } }
]);

Group and Sum

1
2
3
db.collection('orders').aggregate([
  { $group: { _id: '$status', total: { $sum: '$amount' } } }
]);

Group and Average

1
2
3
db.collection('orders').aggregate([
  { $group: { _id: '$status', average: { $avg: '$amount' } } }
]);

Group and Push

1
2
3
db.collection('orders').aggregate([
  { $group: { _id: '$cust_id', items: { $push: '$item' } } }
]);

Group with Multiple Fields

1
2
3
4
5
6
7
8
9
10
11
12
db.collection('orders').aggregate([
  {
    $group: {
      _id: { 
        status: '$status',
        category: '$category'
      },
      count: { $sum: 1 },
      totalAmount: { $sum: '$amount' }
    }
  }
]);

Group with Date Operations

1
2
3
4
5
6
7
8
9
10
11
12
db.collection('orders').aggregate([
  {
    $group: {
      _id: {
        year: { $year: '$orderDate' },
        month: { $month: '$orderDate' }
      },
      totalOrders: { $sum: 1 },
      revenue: { $sum: '$amount' }
    }
  }
]);

Project Fields

The $project operator in MongoDB is used to include, exclude, or rename fields in the output documents.

1
2
3
db.collection('orders').aggregate([
  { $project: { _id: 0, cust_id: 1, amount: 1 } }
]);

Project with Computed Fields

1
2
3
4
5
6
7
8
9
10
db.collection('orders').aggregate([
  {
    $project: {
      _id: 0,
      cust_id: 1,
      amount: 1,
      discount: { $subtract: ['$total', '$amount'] }
    }
  }
]);

Project With Array Operations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
db.collection('orders').aggregate([
  {
    $project: {
      orderId: 1,
      itemCount: { $size: '$items' },
      firstItem: { $arrayElemAt: ['$items', 0] },
      lastItem: { $arrayElemAt: ['$items', -1] },
      items: {
        $map: {
          input: '$items',
          as: 'item',
          in: {
            name: '$$item.name',
            subtotal: {
              $multiply: ['$$item.price', '$$item.quantity']
            }
          }
        }
      }
    }
  }
]);

Project With String Operations

1
2
3
4
5
6
7
8
9
db.collection('users').aggregate([
  {
    $project: {
      fullName: { $concat: ['$firstName', ' ', '$lastName'] },
      email: { $toLower: '$email' },
      age: { $toString: '$age' }
    }
  }
]);

Project With Conditional Fields

1
2
3
4
5
6
7
8
9
10
11
12
13
14
db.collection('users').aggregate([
  {
    $project: {
      name: 1,
      status: {
        $cond: {
          if: { $gte: ['$age', 18] },
          then: 'Adult',
          else: 'Minor'
        }
      }
    }
  }
]);

Run Multiple Aggregations

You can run multiple aggregation pipelines in a single query using the $facet operator.

1
2
3
4
5
6
7
8
9
10
11
12
db.collection('orders').aggregate([
  {
    $facet: {
      totalAmount: [
        { $group: { _id: null, total: { $sum: '$amount' } } }
      ],
      averageAmount: [
        { $group: { _id: null, average: { $avg: '$amount' } } }
      ]
    }
  }
]);

Transactions

Transactions in MongoDB allow you to perform multiple operations as a single, all-or-nothing unit of work. They ensure data integrity and consistency across multiple documents and collections.

graph LR
  start["fa:fa-play Start"]
  subgraph transaction["fa:fa-exchange-alt Transaction"]
    op1["fa:fa-cog Operation 1"]
    op2["fa:fa-cog Operation 2"]
    op3["fa:fa-cog Operation 3"]
  end

  start --> transaction
  transaction --> commit["fa:fa-check Commit"]
  transaction --> abort["fa:fa-times Abort"]

  style transaction stroke:#333,stroke-width:2px
  style start fill:#ccf,stroke:#f66,stroke-width:2px
  style op1 fill:#add8e6,stroke:#333,stroke-width:2px
  style op2 fill:#add8e6,stroke:#333,stroke-width:2px
  style op3 fill:#add8e6,stroke:#333,stroke-width:2px
  style commit fill:#9cf,stroke:#333,stroke-width:2px
  style abort fill:#fcc,stroke:#333,stroke-width:2px

Transaction Properties (ACID)

graph LR
    subgraph acidProperties["🧪 ACID Properties"]
        atomicity["💥 Atomicity"]
        consistency["🔄 Consistency"]
        isolation["🔒 Isolation"]
        durability["💾 Durability"]
    end

    atomicity --> |"All or Nothing"| atomicityDesc["Operations complete successfully or have no effect"]
    consistency --> |"Before and After"| consistencyDesc["Database remains in a consistent state"]
    isolation --> |"Concurrent Transactions"| isolationDesc["Do not interfere with each other"]
    durability --> |"Committed Changes"| durabilityDesc["Persist despite system failures"]

    style acidProperties fill:#f0f0ff,stroke:#333,stroke-width:2px
    style atomicity fill:#e6f2ff,stroke:#333,stroke-width:2px
    style consistency fill:#e6ffe6,stroke:#333,stroke-width:2px
    style isolation fill:#fff0f0,stroke:#333,stroke-width:2px
    style durability fill:#fff0ff,stroke:#333,stroke-width:2px
    style atomicityDesc fill:#f0f8ff,stroke:#333,stroke-width:1px
    style consistencyDesc fill:#f0fff0,stroke:#333,stroke-width:1px
    style isolationDesc fill:#fff5f5,stroke:#333,stroke-width:1px
    style durabilityDesc fill:#fdf0ff,stroke:#333,stroke-width:1px

Using Transactions

To use transactions in MongoDB, you typically follow these steps:

  1. Start a session
  2. Start a transaction
  3. Perform operations
  4. Commit or abort the transaction
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// Define a client

const { MongoClient } = require('mongodb');
const client = new MongoClient('mongodb://localhost:27017');
//...

// Start a session

const session = client.startSession();

try {
  session.startTransaction();

  // Perform multiple operations
  await collection1.updateOne({ _id: 1 }, { $set: { status: 'processing' } }, { session });
  await collection2.insertOne({ orderId: 1, items: ['item1', 'item2'] }, { session });

  // Commit the transaction
  await session.commitTransaction();
} catch (error) {
  // If an error occurred, abort the transaction
  await session.abortTransaction();
  console.error('Transaction aborted:', error);
} finally {
  // End the session
  session.endSession();
}

Considerations for Transactions

  • Performance: Transactions may impact performance, especially for write-heavy workloads.
  • Timeout: Transactions have a default timeout of 60 seconds.
  • Replica Sets: Transactions require a replica set configuration.
  • Sharded Clusters: Transactions on sharded clusters have additional considerations and limitations.
graph TD
  subgraph transactionConsiderations["fa:fa-exclamation-triangle Transaction Considerations"]
    performance["fa:fa-tachometer-alt Performance Impact"]
    timeout["fa:fa-clock Timeout"]
    replicaSet["fa:fa-server Replica Set Required"]
    sharding["fa:fa-cubes Sharding Limitations"]
  end

  style transactionConsiderations stroke:#333,stroke-width:2px
  style performance fill:#fcc,stroke:#333,stroke-width:2px
  style timeout fill:#ffc,stroke:#333,stroke-width:2px
  style replicaSet fill:#cfc,stroke:#333,stroke-width:2px
  style sharding fill:#ccf,stroke:#333,stroke-width:2px

By using transactions, you can ensure data consistency and integrity across multiple operations in MongoDB, especially when dealing with complex data models or critical business logic.

Replica Sets

A replica set is a group of MongoDB instances that maintain the same data set. Replica sets provide redundancy and high availability.

Components of a Replica Set

  • Primary: Receives all write operations.
  • Secondary: Replicates data from the primary. Can be used for read operations.
  • Arbiter: Participates in elections for primary but does not hold data.
graph
  subgraph replicaSet["fa:fa-server Replica Set"]
    primary["fa:fa-database Primary"]
    secondary1["fa:fa-database Secondary"]
    secondary2["fa:fa-database Secondary"]
    arbiter["fa:fa-balance-scale Arbiter"]
  end

  primary --> secondary1
  primary --> secondary2
  primary --> arbiter

  style replicaSet stroke:#333,stroke-width:2px
  style primary fill:#ccf,stroke:#f66,stroke-width:2px
  style secondary1 fill:#add8e6,stroke:#333,stroke-width:2px
  style secondary2 fill:#add8e6,stroke:#333,stroke-width:2px
  style arbiter fill:#9cf,stroke:#333,stroke-width:2px

Replica Set Configuration

To configure a replica set, you use the rs.initiate() method.

1
2
3
4
5
6
7
8
rs.initiate({
  _id: 'rs0',
  members: [
    { _id: 0, host: 'mongo1:27017' },
    { _id: 1, host: 'mongo2:27017' },
    { _id: 2, host: 'mongo3:27017', arbiterOnly: true }
  ]
});

Read Preference

Read preference in MongoDB determines how read operations are distributed across the replica set.

graph LR
  subgraph readPreference["fa:fa-eye Read Preference"]
    primary["fa:fa-database Primary"]
    secondary["fa:fa-database Secondary"]
    primaryPreferred["fa:fa-database PrimaryPreferred"]
    secondaryPreferred["fa:fa-database SecondaryPreferred"]
    nearest["fa:fa-database Nearest"]
  end

  style readPreference stroke:#333,stroke-width:2px
  style primary fill:#ccf,stroke:#f66,stroke-width:2px
  style secondary fill:#add8e6,stroke:#333,stroke-width:2px
  style primaryPreferred fill:#9cf,stroke:#333,stroke-width:2px
  style secondaryPreferred fill:#9cf,stroke:#333,stroke-width:2px
  style nearest fill:#9cf,stroke:#333,stroke-width:2px
  • Primary: Reads from the primary.
  • Secondary: Reads from the secondary.
  • PrimaryPreferred: Reads from the primary if available, otherwise from the secondary.
  • SecondaryPreferred: Reads from the secondary if available, otherwise from the primary.
  • Nearest: Reads from the nearest member of the replica set.
1
2
db.collection('users').find().readPref('secondary');

Write Concern

Write concern in MongoDB determines the level of acknowledgment for write operations.

graph LR
  subgraph writeConcern["fa:fa-sync Write Concern"]
    w0["fa:fa-times w: 0"]
    w1["fa:fa-check w: 1"]
    wMajority["fa:fa-check w: majority"]
  end

  style writeConcern stroke:#333,stroke-width:2px
  style w0 fill:#ccf,stroke:#f66,stroke-width:2px
  style w1 fill:#add8e6,stroke:#333,stroke-width:2px
  style wMajority fill:#9cf,stroke:#333,stroke-width:2px
  • w: 0: No acknowledgment.
  • w: 1: Acknowledgment from the primary.
  • w: majority: Acknowledgment from the majority of the replica set.
1
2
3
db.collection('users').insertOne({ name: 'Alice' }, { writeConcern: { w: 'major

Automatic Failover

MongoDB uses a heartbeat mechanism to detect the availability of replica set members. If the primary becomes unavailable, a new primary is elected.

  • Primary is elected based on the number of votes from the replica set members.
  • Secondary can be promoted to primary if the primary is unavailable.
  • Arbiter is used to break the tie in elections.
graph
  subgraph failover["fa:fa-sync Failover"]
    primary["fa:fa-database Primary"]
    secondary1["fa:fa-database Secondary"]
    secondary2["fa:fa-database Secondary"]
    arbiter["fa:fa-balance-scale Arbiter"]
  end

  primary --> secondary1
  primary --> secondary2
  primary --> arbiter

  style failover stroke:#333,stroke-width:2px
  style primary fill:#ccf,stroke:#f66,stroke-width:2px
  style secondary1 fill:#add8e6,stroke:#333,stroke-width:2px
  style secondary2 fill:#add8e6,stroke:#333,stroke-width:2px
  style arbiter fill:#9cf,stroke:#333,stroke-width:2px

Manual Failover

You can initiate a manual failover in MongoDB by forcing a replica set member to become the primary.

1
rs.stepDown();

Sharding

Sharding is a method for distributing data across multiple machines. It allows you to scale horizontally by adding more machines to your system.

A Collection is divided into chunks, and each chunk is stored on a different shard.

Each Shard is a subset of the data in a sharded cluster.

graph
  subgraph sharding["fa:fa-database Sharding"]
    collection["fa:fa-folder-open Collection"]
    chunk1["fa:fa-cube Chunk 1"]
    chunk2["fa:fa-cube Chunk 2"]
    chunk3["fa:fa-cube Chunk 3"]
  end

  collection --> chunk1
  collection --> chunk2
  collection --> chunk3

  style sharding stroke:#333,stroke-width:2px
  style collection fill:#ccf,stroke:#f66,stroke-width:2px
  style chunk1 fill:#add8e6,stroke:#333,stroke-width:2px
  style chunk2 fill:#9cf,stroke:#333,stroke-width:2px
  style chunk3 fill:#faa,stroke:#333,stroke-width:2px

Components of Sharding

  • Shard: A subset of the data in a sharded cluster.
  • Config Server: Stores metadata and configuration settings for the cluster.
  • Query Router: Routes queries to the appropriate shard.
graph
  subgraph sharding["fa:fa-database Sharding"]
    shard1["fa:fa-database Shard 1"]
    shard2["fa:fa-database Shard 2"]
    shard3["fa:fa-database Shard 3"]
    configServer["fa:fa-cogs Config Server"]
    queryRouter["fa:fa-route Query Router"]
  end

  shard1 --> configServer
  shard2 --> configServer
  shard3 --> configServer
  queryRouter --> shard1
  queryRouter --> shard2
  queryRouter --> shard3

  style sharding stroke:#333,stroke-width:2px
  style shard1 fill:#ccf,stroke:#f66,stroke-width:2px
  style shard2 fill:#add8e6,stroke:#333,stroke-width:2px
  style shard3 fill:#9cf,stroke:#333,stroke-width:2px
  style configServer fill:#ccf,stroke:#f66,stroke-width:2px
  style queryRouter fill:#add8e6,stroke:#333,stroke-width:2px

Sharding Key

The sharding key is the field used to distribute data across the shards. It should be chosen carefully to ensure a balanced distribution of data.

1
db.collection.createIndex({ _id: 'hashed' });

When selecting a shard key, consider the following factors:

  • Cardinality: The number of unique values in the shard key.
  • Write Scaling: The ability to distribute write operations across shards.
  • Query Isolation: The ability to target specific shards for read operations.

Shard Key Strategies

  • Hashed Sharding: Distributes data evenly across the shards using a hash function.
  • Range Sharding: Distributes data based on a range of values in the shard key.
  • Compound Sharding: Distributes data based on multiple fields in the shard key.
1
2
3
db.collection.createIndex({ _id: 'hashed' });
db.collection.createIndex({ date: 1 });
db.collection.createIndex({ country: 1, city: 1 });

Mongoose

Mongoose is an Object Data Modeling (ODM) library for MongoDB and Node.js. It provides a schema-based solution to model your application data.


graph 
  subgraph mongoose["fa:fa-database Mongoose"]
    connect["fa:fa-plug Connect"]
    schema["fa:fa-file Schema"]
    model["fa:fa-cube Model"]
    insert["fa:fa-plus-circle Insert"]
    find["fa:fa-eye Find"]
    update["fa:fa-edit Update"]
    delete["fa:fa-trash Delete"]
  end

  connect --> schema
  schema --> model
  model --> insert
  model --> find
  model --> update
  model --> delete

  style mongoose stroke:#333,stroke-width:2px
  style connect fill:#ccf,stroke:#f66,stroke-width:2px
  style schema fill:#add8e6,stroke:#333,stroke-width:2px
  style model fill:#9cf,stroke:#333,stroke-width:2px
  style insert fill:#ccf,stroke:#f66,stroke-width:2px
  style find fill:#add8e6,stroke:#333,stroke-width:2px
  style update fill:#9cf,stroke:#333,stroke-width:2px
  style delete fill:#faa,stroke:#333,stroke-width:2px

Connecting to MongoDB

To connect to MongoDB using Mongoose, you use the connect() method.

1
2
3
const mongoose = require('mongoose');

mongoose.connect('mongodb://localhost:27017/myapp', { useNewUrlParser: true, useUnifiedTopology: true });

Defining a Schema

A Mongoose schema defines the structure of the documents in a collection.

1
2
3
4
const userSchema = new mongoose.Schema({
  name: String,
  age: Number
});

Creating a Model

A Mongoose model is a class that represents a collection in MongoDB.

1
const User = mongoose.model('User', userSchema);

Inserting Documents

To insert a document into a collection, you create an instance of the model and call the save() method.

1
2
3
const user = new User({ name: 'Alice', age: 25 });

user.save();

Querying Documents

To query documents from a collection, you use the find() method.

1
User.find({ name: 'Alice' });

With Projection:

1
User.find({ name: 'Alice' }, { name: 1, age: 1 });

Updating Documents

To update documents in a collection, you use the updateOne() method.

1
User.updateOne({ name: 'Alice' }, { age: 26 });

Deleting Documents

To delete documents from a collection, you use the deleteOne() method.

1
User.deleteOne({ name: 'Alice' });

Middleware

Mongoose middleware are functions that are executed before or after certain operations.

1
2
3
4
userSchema.pre('save', function(next) {
  console.log('Saving user...');
  next();
});

Virtuals

Mongoose virtuals are document properties that you can get and set but that do not get persisted to MongoDB.

1
2
3
4
userSchema.virtual('fullName').get(function() {
  return this.name + ' ' + this.age;
});

Plugins

Mongoose plugins are reusable pieces of schema middleware that can be added to any schema.

1
2
3
const timestampPlugin = require('./plugins/timestamp');

userSchema.plugin(timestampPlugin);

Transactions

Mongoose transactions allow you to perform multiple operations on multiple documents in a single transaction.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
const session = await mongoose.startSession();
session.startTransaction();

try {
  await User.create({ name: 'Alice' }, { session });
  await User.create({ name: 'Bob' }, { session });

  await session.commitTransaction();
} catch (error) {
  await session.abortTransaction();
} finally {
  session.endSession();
}

Aggregation

Mongoose provides a fluent API for building aggregation pipelines.

1
2
3
4
const result = await User.aggregate([
  { $match: { name: 'Alice' } },
  { $group: { _id: '$name', total: { $sum: '$age' } }
]);

Indexes

Mongoose allows you to define indexes on your schemas.

1
userSchema.index({ name: 1 });

Population

Mongoose population allows you to reference documents in other collections.

1
2
3
4
const userSchema = new mongoose.Schema({
  name: String,
  posts: [{ type: mongoose.Schema.Types.ObjectId, ref: 'Post' }]
});

Validation

Mongoose provides built-in validation for schema fields.

1
2
3
const userSchema = new mongoose.Schema({
  name: { type: String, required: true }
});

Patterns

PatternDescriptionUse CaseAdvantagesDisadvantages
Bucket PatternGroups related documents into fixed-size “buckets” or arraysTime-series data, IoT sensor readings- Reduces number of documents
- Improves query performance for range scans
- Complex to update individual items
- May lead to document growth
Attribute PatternStores a set of fields with similar access patterns as an embedded documentProducts with varying attributes- Flexible schema
- Efficient querying of common attributes
- More complex queries for specific attributes
- Potential for unused fields
Outlier PatternStores common data in one collection and rare, oversized data in anotherSocial media posts with varying engagement levels- Optimizes for common case performance
- Prevents document size issues
- Requires two queries for outliers
- More complex application logic
Subset PatternStores a subset of fields from a document in a separate collectionUser profiles with frequently accessed fields- Improves read performance for common queries
- Reduces working set size
- Data duplication
- Requires keeping subsets in sync

Q&A

What is .exec() in Mongoose?

The exec() function in Mongoose is used to execute a query and return a promise. It allows you to chain query methods and then execute the query at the end.

1
User.find({ name: 'Alice' }).exec();

You can run the query without exec(), by callback or using async/await.

1
2
3
User.find({ name: 'Alice' }, (error, users) => {
  console.log(users);
});
1
const users = await User.find({ name: 'Alice' });

What is the difference between findOne() and find() in Mongoose?

  • find(): Returns an array of all documents that match the query criteria.
  • findOne(): Returns the first document that matches the query criteria.

What is the difference between Model.create() and new Model().save() in Mongoose?

  • Model.create(): Creates a new document and saves it to the database in a single step.
1
User.create({ name: 'Alice' });
  • new Model().save(): reates a new instance of the model but doesn’t save it to the database immediately. You can modify the instance, perform validations, or run any other operations before calling .save() to persist the changes.
1
2
3
const doc = new Model({ name: 'John', age: 30 });
doc.age = 31; // Modify the document
await doc.save(); // Save the document after modification

What is the purpose of the lean() method in Mongoose queries, and when should it be used?

The lean() method in Mongoose queries returns plain JavaScript objects instead of Mongoose documents which come with a lot of additional features, such as getters, setters, and methods that are useful for working with the document . It should be used when you don’t need the full Mongoose document features and want to improve query performance.

1
User.find({ name: 'Alice' }).lean();

How to implement soft deletes in Mongoose?

Soft deletes in Mongoose involve marking documents as deleted instead of physically removing them from the database. You can achieve this by adding a deleted field to your schema and setting it to true when a document is deleted.

1
2
3
4
const userSchema = new mongoose.Schema({
  name: String,
  deleted: { type: Boolean, default: false }
});

Use pre middleware to exclude deleted documents from query results.

1
2
3
4
userSchema.pre(/^find/, function(next) {
  this.where({ deleted: false });
  next();
});

Add a method to “soft delete” a document.

1
2
3
4
userSchema.methods.softDelete = function() {
  this.deleted = true;
  return this.save();
};
This post is licensed under CC BY 4.0 by the author.