Post

MERN - MongoDB Fundamental

MongoDB Architecture

MongoDB is a popular NoSQL database designed for high performance, high availability, and easy scalability. It stores data in flexible, JSON-like documents, making it easy to work with structured, semi-structured, and unstructured data.

  • Database: A container for collections.
  • Collection: A group of MongoDB documents.
  • Document: A set of key-value pairs (similar to JSON objects).
graph 
  subgraph mongoDB["fa:fa-database MongoDB"]
    database["fa:fa-folder Database"]
    database --> collection["fa:fa-folder-open Collection"]
    collection --> document["fa:fa-file Document"]
  end

  style mongoDB stroke:#333,stroke-width:2px
  style database fill:#ccf,stroke:#f66,stroke-width:2px
  style collection fill:#add8e6,stroke:#333,stroke-width:2px
  style document fill:#9cf,stroke:#333,stroke-width:2px

CRUD Operations

CRUD stands for Create, Read, Update, and Delete. These are the basic operations for interacting with data in MongoDB.

graph
  subgraph crudOperations["fa:fa-tools CRUD Operations"]
    create["fa:fa-plus-circle Create"] --> read["fa:fa-eye Read"]
    read --> update["fa:fa-edit Update"]
    update --> delete["fa:fa-trash Delete"]
  end

  style crudOperations stroke:#333,stroke-width:2px
  style create fill:#ccf,stroke:#f66,stroke-width:2px
  style read fill:#add8e6,stroke:#333,stroke-width:2px
  style update fill:#9cf,stroke:#333,stroke-width:2px
  style delete fill:#faa,stroke:#333,stroke-width:2px

Create

To insert a new document into a collection, you use the insertOne() or insertMany() methods.

1
db.collection('users').insertOne({ name: 'Alice', age: 25 });

Read

To read documents from a collection, you use the find() method.

1
db.collection('users').find({ name: 'Alice' });

Update

To update existing documents, you use the updateOne() or updateMany() methods.

1
2
3
db.collection('users').updateOne({ name: 'Alice' }, { $set: { age: 26 } });

db.collection('users').updateMany({ city: 'New York' }, { $set: { city: 'San Francisco' } });

Update Operators Operators in MongoDB are used to perform specific operations on fields in documents.


graph LR
  subgraph updateOperators["fa:fa-sync Update Operators"]
    set["fa:fa-equals $set"]
    inc["fa:fa-plus $inc"]
    mul["fa:fa-times $mul"]
    unset["fa:fa-trash-alt $unset"]
    rename["fa:fa-i-cursor $rename"]
  end

  style updateOperators stroke:#333,stroke-width:2px
  style set fill:#ccf,stroke:#f66,stroke-width:2px
  style inc fill:#add8e6,stroke:#333,stroke-width:2px
  style mul fill:#9cf,stroke:#333,stroke-width:2px
  style unset fill:#faa,stroke:#333,stroke-width:2px
  style rename fill:#f9f,stroke:#333,stroke-width:2px
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// $set operator to update fields
db.collection('users').updateOne({ name: 'Alice' }, { $set: { age: 26, city: 'New York' } });

// $set operator to update nested fields
db.collection('users').updateOne({ name: 'Alice' }, { $set: { 'address.city': 'New York' } });

// $inc operator to increment a field
db.collection('users').updateOne({ name: 'Alice' }, { $inc: { age: 1 } });

// $mul operator to multiply a field value
db.collection('users').updateOne({ name: 'Alice' }, { $mul: { age: 2 } });

// $unset operator to remove a field
db.collection('users').updateOne({ name: 'Alice' }, { $unset: { city: '' } });

// $rename operator to rename a field
db.collection('users').updateOne({ name: 'Alice' }, { $rename: { city: 'location' } });

Delete

To delete documents from a collection, you use the deleteOne() or deleteMany() methods.

1
2
3
db.collection('users').deleteOne({ name: 'Alice' });

db.collection('users').deleteMany({ city: 'New York' });

Indexing

Indexing in MongoDB improves query performance by creating efficient data structures for faster data retrieval.

graph LR
  subgraph indexing["fa:fa-search Indexing"]
    singleField["fa:fa-file $singleField"]
    compound["fa:fa-layer-group $compound"]
    multikey["fa:fa-list $multikey"]
    text["fa:fa-font $text"]
  end

  style indexing stroke:#333,stroke-width:2px
  style singleField fill:#ccf,stroke:#f66,stroke-width:2px
  style compound fill:#add8e6,stroke:#333,stroke-width:2px
  style multikey fill:#9cf,stroke:#333,stroke-width:2px
  style text fill:#faa,stroke:#333,stroke-width:2px
  • Single Field Index: Index on a single field of a document.
  • Compound Index: Index on multiple fields.
  • Multikey Index: Index on array fields.
  • Text Index: Supports text search queries on string content.

Single Field Index

To create an index, you use the createIndex() method.

1
db.collection('users').createIndex({ name: 1 });

Compound Index

A compound index in MongoDB is an index on multiple fields in a document.

graph LR
  subgraph compoundIndex["fa:fa-layer-group Compound Index"]
    field1["fa:fa-file Field 1"]
    field2["fa:fa-file Field 2"]
    field3["fa:fa-file Field 3"]
  end

  style compoundIndex stroke:#333,stroke-width:2px
  style field1 fill:#ccf,stroke:#f66,stroke-width:2px
  style field2 fill:#add8e6,stroke:#333,stroke-width:2px
  style field3 fill:#9cf,stroke:#333,stroke-width:2px
1
db.collection('users').createIndex({ name: 1, age: 1, city: 1, country: 1, hobbies: 1 });

Prefixes of a compound index can be used to satisfy queries that match the index fields from left to right.

1
2
db.collection('users').find({ name: 'Alice', age: 25 });
db.collection('users').find({ name: 'Alice', age: 25, city: 'New York' });

Multikey Index

A multikey index in MongoDB is an index on an array field.

graph LR
  subgraph multikeyIndex["fa:fa-list Multikey Index"]
    arrayField["fa:fa-list Array Field"]
  end

  style multikeyIndex stroke:#333,stroke-width:2px
  style arrayField fill:#ccf,stroke:#f66,stroke-width:2px
1
db.collection('users').createIndex({ hobbies: 1 });

Limitations of Multikey Indexes

  • you cannot create a compound index if more than one field is an array.
1
db.collection('users').createIndex({ "hobbies": 1, "tags": 1 }); // Not allowed if both hobbies and tags are arrays

Text Index

A text index in MongoDB is used for text search queries on string content.

1
db.collection('articles').createIndex({ content: 'text' });

Querying with a text index:

1
db.collection('articles').find({ $text: { $search: 'database' } });

Array Operations

MongoDB supports a variety of array operations for working with arrays in documents.


graph 

  subgraph  
    each["fa:fa-list $each"]
    in["fa:fa-rectangle-list $in"]
    gt["fa:fa-angle-double-right $gt"]
    ne["fa:fa-angle-double-left $ne"]
  end


  subgraph     
    pull["fa:fa-trash-alt $pull"]
    pop["fa:fa-trash-alt $pop"]
    pullAll["fa:fa-trash-alt $pullAll"]
  end

    subgraph arrayOperations["fa:fa-list Array Operations"]
    elementMatch["fa:fa-equals $elementMatch"]
    push["fa:fa-plus $push"]
    set["fa:fa-hammer $set"]
    addToSet["fa:fa-plus-square $addToSet"]
  end


  style elementMatch fill:#add8e6, stroke:#333,stroke-width:2px
  style arrayOperations stroke:#333,stroke-width:2px
  style push fill:#ccf,stroke:#f66,stroke-width:2px
  style addToSet fill:#add8e6,stroke:#333,stroke-width:2px
  style each fill:#9cf,stroke:#333,stroke-width:2px
  style pull fill:#9cf,stroke:#333,stroke-width:2px
  style pop fill:#faa,stroke:#333,stroke-width:2px
  style pullAll fill:#ccf,stroke:#f66,stroke-width:2px
  style in fill:#add8e6,stroke:#333,stroke-width:2px
  style gt fill:#9cf,stroke:#333,stroke-width:2px
  style ne fill:#faa,stroke:#333,stroke-width:2px

Adding Elements to an Array

To add elements to an array in a document, you use the $push operator.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { hobbies: 'Reading' } });

Querying Arrays with $elemMatch

Given a collection of students with scores in different subjects:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{
  "_id": ObjectId("64d39a7a8b0e8c284a2c1234"),
  "name": "Alice",
  "scores": [
    { "subject": "Math", "score": 95 },
    { "subject": "English", "score": 88 }
  ]
},
{
  "_id": ObjectId("64d39a808b0e8c284a2c1235"),
  "name": "Bob",
  "scores": [
    { "subject": "Math", "score": 78 },
    { "subject": "English", "score": 92 }
  ]
}

Querying with $elemMatch:

To find students who specifically scored above 90 in Math, we need $elemMatch:

1
2
3
4
5
db.students.find({ 
  scores: { 
    $elemMatch: { subject: "Math", score: { $gt: 90 } } 
  } 
})

Result: This will return only Alice, as she is the only student with a score above 90 in the “Math” subject. $elemMatch ensures that all the conditions within the array element must be met.

Without $elemMatch - This will return both Alice and Bob, as they both have scores above 90 in different subjects and not necessarily in the “Math” subject.

graph 
  subgraph query["Query"]
    elemMatchMath["scores { $elemMatch: { subject: 'Math', score: { $gt: 90 } } }"]
  end

  subgraph documents["Documents"]
    alice["Alice: { scores: [{ subject: 'Math', score: 95 }, { subject: 'English', score: 88 }] }"]
    bob["Bob: { scores: [{ subject: 'Math', score: 78 }, { subject: 'English', score: 92 }] }"]
  end



  elemMatchMath -->  alice --> found["✅"]
  elemMatchMath --> bob 
  bob --> |With $elemMatch|notFound["❌"]
   bob --> |Without $elemMatch|found2["✅"]

  style found fill:#90EE90
  style notFound fill:#FFCCCC

Add Unique - $addToSet

The $addToSet operator in MongoDB is used to add elements to an array only if they are not already present. This prevents duplicate entries in the array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $addToSet: { hobbies: 'Reading' } });

Add Multiple $push and $each

The $push operator in MongoDB is used to add elements to an array. The $each modifier allows you to add multiple elements to the array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { hobbies: { $each: ['Reading', 'Swimming'] } } });

Add Sorted - $push and $sort

The $push operator in MongoDB is used to add elements to an array. The $sort modifier allows you to sort the array elements.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { scores: { $each: [85, 90], $sort: -1 } } });

Add Limited - $push and $slice

The $push operator in MongoDB is used to add elements to an array. The $slice modifier allows you to limit the number of elements in the array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $push: { scores: { $each: [85, 90], $slice: -3 } } });

Removing Elements from an Array

To remove elements from an array in a document, you use the $pull operator.

1
2
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { hobbies: 'Reading' } });

Remove the first or last element - $pop

The $pop operator in MongoDB is used to remove the first or last element from an array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pop: { hobbies: 1 } });

Remove Multiple - $pullAll

The $pullAll operator in MongoDB is used to remove all occurrences of specified values from an array.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pullAll: { hobbies: ['Reading', 'Swimming'] } });

Remove Multiple - $pull and $in

The $pull operator in MongoDB is used to remove elements from an array. The $in modifier allows you to specify multiple values to remove.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { hobbies: { $in: ['Reading', 'Swimming'] } } });

Remove Condition - $pull and $gt

The $pull operator in MongoDB is used to remove elements from an array. The $gt modifier allows you to specify a condition for removing elements.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { scores: { $gt: 85 } } });

Remove Not Equal - $pull and $ne

The $pull operator in MongoDB is used to remove elements from an array. The $ne modifier allows you to specify a condition for removing elements that are not equal to a value.

1
db.collection('users').updateOne({ name: 'Alice' }, { $pull: { scores: { $ne: 85 } } });

Update Condition - $set and $

The $set operator in MongoDB is used to update fields in a document. The $ positional operator allows you to update the first element that matches a condition in an array.

1
db.collection('users').updateOne({ name: 'Alice', 'scores.subject': 'Math' }, { $set: { 'scores.$.score': 90 } });

Update All - $[]

The $[] operator in MongoDB is used to update all elements in an array that match a condition.

1
db.collection('users').updateOne({ name: 'Alice' }, { $set: { 'scores.$[].score': 90 } });

To increment a field in all elements of an array, you can use the $[] operator with the $inc operator.

1
db.collection('users').updateOne({ name: 'Alice' }, { $inc: { 'scores.$[].score': 5 } });

Update Filtered - $[<identifier>]

The $[<identifier>] operator in MongoDB is used to update elements in an array that match a condition.

1
db.collection('users').updateOne({ name: 'Alice' }, { $set: { 'scores.$[elem].score': 90 } }, { arrayFilters: [{ 'elem.subject': 'Math' }] });

Aggregation

Aggregation operations process data records and return computed results. Aggregation allows you to perform complex data processing and transformation.

Aggregation Pipeline

The aggregation framework in MongoDB uses a pipeline approach, where multiple stages transform the documents.

1
2
3
4
5
db.collection('orders').aggregate([
  { $match: { status: 'A' } },
  { $group: { _id: '$cust_id', total: { $sum: '$amount' } } },
  { $sort: { total: -1 } }
]);
graph
  subgraph aggregation["fa:fa-chart-line Aggregation"]
    stage1["fa:fa-filter Match"] --> stage2["fa:fa-layer-group Group"]
    stage2 --> stage3["fa:fa-sort Sort"]
  end

  style aggregation stroke:#333,stroke-width:2px
  style stage1 fill:#ccf,stroke:#f66,stroke-width:2px
  style stage2 fill:#add8e6,stroke:#333,stroke-width:2px
  style stage3 fill:#9cf,stroke:#333,stroke-width:2px

Join Collections

MongoDB does not support joins like relational databases. Instead, you can use the $lookup operator to perform a left outer join between two collections.

1
2
3
4
5
6
7
8
9
10
db.collection('orders').aggregate([
  {
    $lookup: {
      from: 'customers',
      localField: 'cust_id',
      foreignField: '_id',
      as: 'customer'
    }
  }
]);

graph
  subgraph joinCollections["fa:fa-link Join Collections"]
    orders["fa:fa-folder-open Orders"]
    customers["fa:fa-folder-open Customers"]
  end

  orders --> |$lookup| customers

  style joinCollections stroke:#333,stroke-width:2px
  style orders fill:#ccf,stroke:#f66,stroke-width:2px
  style customers fill:#add8e6,stroke:#333,stroke-width:2px

Unwind Arrays

The $unwind operator in MongoDB is used to deconstruct an array field into multiple documents.

1
2
3
db.collection('orders').aggregate([
  { $unwind: '$items' }
]);

Group Documents

The $group operator in MongoDB is used to group documents by a specified key.

1
2
3
db.collection('orders').aggregate([
  { $group: { _id: '$cust_id', total: { $sum: '$amount' } } }
]);

Project Fields

The $project operator in MongoDB is used to include, exclude, or rename fields in the output documents.

1
2
3
db.collection('orders').aggregate([
  { $project: { _id: 0, cust_id: 1, amount: 1 } }
]);

Run Multiple Aggregations

You can run multiple aggregation pipelines in a single query using the $facet operator.

1
2
3
4
5
6
7
8
9
10
11
12
db.collection('orders').aggregate([
  {
    $facet: {
      totalAmount: [
        { $group: { _id: null, total: { $sum: '$amount' } } }
      ],
      averageAmount: [
        { $group: { _id: null, average: { $avg: '$amount' } } }
      ]
    }
  }
]);

Transactions

Transactions in MongoDB allow you to perform multiple operations as a single, all-or-nothing unit of work. They ensure data integrity and consistency across multiple documents and collections.

graph LR
  start["fa:fa-play Start"]
  subgraph transaction["fa:fa-exchange-alt Transaction"]
    op1["fa:fa-cog Operation 1"]
    op2["fa:fa-cog Operation 2"]
    op3["fa:fa-cog Operation 3"]
  end

  start --> transaction
  transaction --> commit["fa:fa-check Commit"]
  transaction --> abort["fa:fa-times Abort"]

  style transaction stroke:#333,stroke-width:2px
  style start fill:#ccf,stroke:#f66,stroke-width:2px
  style op1 fill:#add8e6,stroke:#333,stroke-width:2px
  style op2 fill:#add8e6,stroke:#333,stroke-width:2px
  style op3 fill:#add8e6,stroke:#333,stroke-width:2px
  style commit fill:#9cf,stroke:#333,stroke-width:2px
  style abort fill:#fcc,stroke:#333,stroke-width:2px

Transaction Properties (ACID)

graph LR
    subgraph acidProperties["🧪 ACID Properties"]
        atomicity["💥 Atomicity"]
        consistency["🔄 Consistency"]
        isolation["🔒 Isolation"]
        durability["💾 Durability"]
    end

    atomicity --> |"All or Nothing"| atomicityDesc["Operations complete successfully or have no effect"]
    consistency --> |"Before and After"| consistencyDesc["Database remains in a consistent state"]
    isolation --> |"Concurrent Transactions"| isolationDesc["Do not interfere with each other"]
    durability --> |"Committed Changes"| durabilityDesc["Persist despite system failures"]

    style acidProperties fill:#f0f0ff,stroke:#333,stroke-width:2px
    style atomicity fill:#e6f2ff,stroke:#333,stroke-width:2px
    style consistency fill:#e6ffe6,stroke:#333,stroke-width:2px
    style isolation fill:#fff0f0,stroke:#333,stroke-width:2px
    style durability fill:#fff0ff,stroke:#333,stroke-width:2px
    style atomicityDesc fill:#f0f8ff,stroke:#333,stroke-width:1px
    style consistencyDesc fill:#f0fff0,stroke:#333,stroke-width:1px
    style isolationDesc fill:#fff5f5,stroke:#333,stroke-width:1px
    style durabilityDesc fill:#fdf0ff,stroke:#333,stroke-width:1px

Using Transactions

To use transactions in MongoDB, you typically follow these steps:

  1. Start a session
  2. Start a transaction
  3. Perform operations
  4. Commit or abort the transaction
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// Define a client

const { MongoClient } = require('mongodb');
const client = new MongoClient('mongodb://localhost:27017');
//...

// Start a session

const session = client.startSession();

try {
  session.startTransaction();

  // Perform multiple operations
  await collection1.updateOne({ _id: 1 }, { $set: { status: 'processing' } }, { session });
  await collection2.insertOne({ orderId: 1, items: ['item1', 'item2'] }, { session });

  // Commit the transaction
  await session.commitTransaction();
} catch (error) {
  // If an error occurred, abort the transaction
  await session.abortTransaction();
  console.error('Transaction aborted:', error);
} finally {
  // End the session
  session.endSession();
}

Considerations for Transactions

  • Performance: Transactions may impact performance, especially for write-heavy workloads.
  • Timeout: Transactions have a default timeout of 60 seconds.
  • Replica Sets: Transactions require a replica set configuration.
  • Sharded Clusters: Transactions on sharded clusters have additional considerations and limitations.
graph TD
  subgraph transactionConsiderations["fa:fa-exclamation-triangle Transaction Considerations"]
    performance["fa:fa-tachometer-alt Performance Impact"]
    timeout["fa:fa-clock Timeout"]
    replicaSet["fa:fa-server Replica Set Required"]
    sharding["fa:fa-cubes Sharding Limitations"]
  end

  style transactionConsiderations stroke:#333,stroke-width:2px
  style performance fill:#fcc,stroke:#333,stroke-width:2px
  style timeout fill:#ffc,stroke:#333,stroke-width:2px
  style replicaSet fill:#cfc,stroke:#333,stroke-width:2px
  style sharding fill:#ccf,stroke:#333,stroke-width:2px

By using transactions, you can ensure data consistency and integrity across multiple operations in MongoDB, especially when dealing with complex data models or critical business logic.

Replica Sets

A replica set is a group of MongoDB instances that maintain the same data set. Replica sets provide redundancy and high availability.

Components of a Replica Set

  • Primary: Receives all write operations.
  • Secondary: Replicates data from the primary. Can be used for read operations.
  • Arbiter: Participates in elections for primary but does not hold data.
graph
  subgraph replicaSet["fa:fa-server Replica Set"]
    primary["fa:fa-database Primary"]
    secondary1["fa:fa-database Secondary"]
    secondary2["fa:fa-database Secondary"]
    arbiter["fa:fa-balance-scale Arbiter"]
  end

  primary --> secondary1
  primary --> secondary2
  primary --> arbiter

  style replicaSet stroke:#333,stroke-width:2px
  style primary fill:#ccf,stroke:#f66,stroke-width:2px
  style secondary1 fill:#add8e6,stroke:#333,stroke-width:2px
  style secondary2 fill:#add8e6,stroke:#333,stroke-width:2px
  style arbiter fill:#9cf,stroke:#333,stroke-width:2px

Replica Set Configuration

To configure a replica set, you use the rs.initiate() method.

1
2
3
4
5
6
7
8
rs.initiate({
  _id: 'rs0',
  members: [
    { _id: 0, host: 'mongo1:27017' },
    { _id: 1, host: 'mongo2:27017' },
    { _id: 2, host: 'mongo3:27017', arbiterOnly: true }
  ]
});

Read Preference

Read preference in MongoDB determines how read operations are distributed across the replica set.

graph LR
  subgraph readPreference["fa:fa-eye Read Preference"]
    primary["fa:fa-database Primary"]
    secondary["fa:fa-database Secondary"]
    primaryPreferred["fa:fa-database PrimaryPreferred"]
    secondaryPreferred["fa:fa-database SecondaryPreferred"]
    nearest["fa:fa-database Nearest"]
  end

  style readPreference stroke:#333,stroke-width:2px
  style primary fill:#ccf,stroke:#f66,stroke-width:2px
  style secondary fill:#add8e6,stroke:#333,stroke-width:2px
  style primaryPreferred fill:#9cf,stroke:#333,stroke-width:2px
  style secondaryPreferred fill:#9cf,stroke:#333,stroke-width:2px
  style nearest fill:#9cf,stroke:#333,stroke-width:2px
  • Primary: Reads from the primary.
  • Secondary: Reads from the secondary.
  • PrimaryPreferred: Reads from the primary if available, otherwise from the secondary.
  • SecondaryPreferred: Reads from the secondary if available, otherwise from the primary.
  • Nearest: Reads from the nearest member of the replica set.
1
2
db.collection('users').find().readPref('secondary');

Write Concern

Write concern in MongoDB determines the level of acknowledgment for write operations.

graph LR
  subgraph writeConcern["fa:fa-sync Write Concern"]
    w0["fa:fa-times w: 0"]
    w1["fa:fa-check w: 1"]
    wMajority["fa:fa-check w: majority"]
  end

  style writeConcern stroke:#333,stroke-width:2px
  style w0 fill:#ccf,stroke:#f66,stroke-width:2px
  style w1 fill:#add8e6,stroke:#333,stroke-width:2px
  style wMajority fill:#9cf,stroke:#333,stroke-width:2px
  • w: 0: No acknowledgment.
  • w: 1: Acknowledgment from the primary.
  • w: majority: Acknowledgment from the majority of the replica set.
1
2
3
db.collection('users').insertOne({ name: 'Alice' }, { writeConcern: { w: 'major

Automatic Failover

MongoDB uses a heartbeat mechanism to detect the availability of replica set members. If the primary becomes unavailable, a new primary is elected.

  • Primary is elected based on the number of votes from the replica set members.
  • Secondary can be promoted to primary if the primary is unavailable.
  • Arbiter is used to break the tie in elections.
graph
  subgraph failover["fa:fa-sync Failover"]
    primary["fa:fa-database Primary"]
    secondary1["fa:fa-database Secondary"]
    secondary2["fa:fa-database Secondary"]
    arbiter["fa:fa-balance-scale Arbiter"]
  end

  primary --> secondary1
  primary --> secondary2
  primary --> arbiter

  style failover stroke:#333,stroke-width:2px
  style primary fill:#ccf,stroke:#f66,stroke-width:2px
  style secondary1 fill:#add8e6,stroke:#333,stroke-width:2px
  style secondary2 fill:#add8e6,stroke:#333,stroke-width:2px
  style arbiter fill:#9cf,stroke:#333,stroke-width:2px

Manual Failover

You can initiate a manual failover in MongoDB by forcing a replica set member to become the primary.

1
rs.stepDown();

Sharding

Sharding is a method for distributing data across multiple machines. It allows you to scale horizontally by adding more machines to your system.

A Collection is divided into chunks, and each chunk is stored on a different shard.

Each Shard is a subset of the data in a sharded cluster.

graph
  subgraph sharding["fa:fa-database Sharding"]
    collection["fa:fa-folder-open Collection"]
    chunk1["fa:fa-cube Chunk 1"]
    chunk2["fa:fa-cube Chunk 2"]
    chunk3["fa:fa-cube Chunk 3"]
  end

  collection --> chunk1
  collection --> chunk2
  collection --> chunk3

  style sharding stroke:#333,stroke-width:2px
  style collection fill:#ccf,stroke:#f66,stroke-width:2px
  style chunk1 fill:#add8e6,stroke:#333,stroke-width:2px
  style chunk2 fill:#9cf,stroke:#333,stroke-width:2px
  style chunk3 fill:#faa,stroke:#333,stroke-width:2px

Components of Sharding

  • Shard: A subset of the data in a sharded cluster.
  • Config Server: Stores metadata and configuration settings for the cluster.
  • Query Router: Routes queries to the appropriate shard.
graph
  subgraph sharding["fa:fa-database Sharding"]
    shard1["fa:fa-database Shard 1"]
    shard2["fa:fa-database Shard 2"]
    shard3["fa:fa-database Shard 3"]
    configServer["fa:fa-cogs Config Server"]
    queryRouter["fa:fa-route Query Router"]
  end

  shard1 --> configServer
  shard2 --> configServer
  shard3 --> configServer
  queryRouter --> shard1
  queryRouter --> shard2
  queryRouter --> shard3

  style sharding stroke:#333,stroke-width:2px
  style shard1 fill:#ccf,stroke:#f66,stroke-width:2px
  style shard2 fill:#add8e6,stroke:#333,stroke-width:2px
  style shard3 fill:#9cf,stroke:#333,stroke-width:2px
  style configServer fill:#ccf,stroke:#f66,stroke-width:2px
  style queryRouter fill:#add8e6,stroke:#333,stroke-width:2px

Sharding Key

The sharding key is the field used to distribute data across the shards. It should be chosen carefully to ensure a balanced distribution of data.

1
db.collection.createIndex({ _id: 'hashed' });

When selecting a shard key, consider the following factors:

  • Cardinality: The number of unique values in the shard key.
  • Write Scaling: The ability to distribute write operations across shards.
  • Query Isolation: The ability to target specific shards for read operations.

Shard Key Strategies

  • Hashed Sharding: Distributes data evenly across the shards using a hash function.
  • Range Sharding: Distributes data based on a range of values in the shard key.
  • Compound Sharding: Distributes data based on multiple fields in the shard key.
1
2
3
db.collection.createIndex({ _id: 'hashed' });
db.collection.createIndex({ date: 1 });
db.collection.createIndex({ country: 1, city: 1 });

Mongoose

Mongoose is an Object Data Modeling (ODM) library for MongoDB and Node.js. It provides a schema-based solution to model your application data.


graph 
  subgraph mongoose["fa:fa-database Mongoose"]
    connect["fa:fa-plug Connect"]
    schema["fa:fa-file Schema"]
    model["fa:fa-cube Model"]
    insert["fa:fa-plus-circle Insert"]
    find["fa:fa-eye Find"]
    update["fa:fa-edit Update"]
    delete["fa:fa-trash Delete"]
  end

  connect --> schema
  schema --> model
  model --> insert
  model --> find
  model --> update
  model --> delete

  style mongoose stroke:#333,stroke-width:2px
  style connect fill:#ccf,stroke:#f66,stroke-width:2px
  style schema fill:#add8e6,stroke:#333,stroke-width:2px
  style model fill:#9cf,stroke:#333,stroke-width:2px
  style insert fill:#ccf,stroke:#f66,stroke-width:2px
  style find fill:#add8e6,stroke:#333,stroke-width:2px
  style update fill:#9cf,stroke:#333,stroke-width:2px
  style delete fill:#faa,stroke:#333,stroke-width:2px

Connecting to MongoDB

To connect to MongoDB using Mongoose, you use the connect() method.

1
2
3
const mongoose = require('mongoose');

mongoose.connect('mongodb://localhost:27017/myapp', { useNewUrlParser: true, useUnifiedTopology: true });

Defining a Schema

A Mongoose schema defines the structure of the documents in a collection.

1
2
3
4
const userSchema = new mongoose.Schema({
  name: String,
  age: Number
});

Creating a Model

A Mongoose model is a class that represents a collection in MongoDB.

1
const User = mongoose.model('User', userSchema);

Inserting Documents

To insert a document into a collection, you create an instance of the model and call the save() method.

1
2
3
const user = new User({ name: 'Alice', age: 25 });

user.save();

Querying Documents

To query documents from a collection, you use the find() method.

1
User.find({ name: 'Alice' });

With Projection:

1
User.find({ name: 'Alice' }, { name: 1, age: 1 });

Updating Documents

To update documents in a collection, you use the updateOne() method.

1
User.updateOne({ name: 'Alice' }, { age: 26 });

Deleting Documents

To delete documents from a collection, you use the deleteOne() method.

1
User.deleteOne({ name: 'Alice' });

Middleware

Mongoose middleware are functions that are executed before or after certain operations.

1
2
3
4
userSchema.pre('save', function(next) {
  console.log('Saving user...');
  next();
});

Virtuals

Mongoose virtuals are document properties that you can get and set but that do not get persisted to MongoDB.

1
2
3
4
userSchema.virtual('fullName').get(function() {
  return this.name + ' ' + this.age;
});

Plugins

Mongoose plugins are reusable pieces of schema middleware that can be added to any schema.

1
2
3
const timestampPlugin = require('./plugins/timestamp');

userSchema.plugin(timestampPlugin);

Transactions

Mongoose transactions allow you to perform multiple operations on multiple documents in a single transaction.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
const session = await mongoose.startSession();
session.startTransaction();

try {
  await User.create({ name: 'Alice' }, { session });
  await User.create({ name: 'Bob' }, { session });

  await session.commitTransaction();
} catch (error) {
  await session.abortTransaction();
} finally {
  session.endSession();
}

Aggregation

Mongoose provides a fluent API for building aggregation pipelines.

1
2
3
4
const result = await User.aggregate([
  { $match: { name: 'Alice' } },
  { $group: { _id: '$name', total: { $sum: '$age' } }
]);

Indexes

Mongoose allows you to define indexes on your schemas.

1
userSchema.index({ name: 1 });

Population

Mongoose population allows you to reference documents in other collections.

1
2
3
4
const userSchema = new mongoose.Schema({
  name: String,
  posts: [{ type: mongoose.Schema.Types.ObjectId, ref: 'Post' }]
});

Validation

Mongoose provides built-in validation for schema fields.

1
2
3
const userSchema = new mongoose.Schema({
  name: { type: String, required: true }
});

Patterns

PatternDescriptionUse CaseAdvantagesDisadvantages
Bucket PatternGroups related documents into fixed-size “buckets” or arraysTime-series data, IoT sensor readings- Reduces number of documents
- Improves query performance for range scans
- Complex to update individual items
- May lead to document growth
Attribute PatternStores a set of fields with similar access patterns as an embedded documentProducts with varying attributes- Flexible schema
- Efficient querying of common attributes
- More complex queries for specific attributes
- Potential for unused fields
Outlier PatternStores common data in one collection and rare, oversized data in anotherSocial media posts with varying engagement levels- Optimizes for common case performance
- Prevents document size issues
- Requires two queries for outliers
- More complex application logic
Subset PatternStores a subset of fields from a document in a separate collectionUser profiles with frequently accessed fields- Improves read performance for common queries
- Reduces working set size
- Data duplication
- Requires keeping subsets in sync

Q&A

What is .exec() in Mongoose?

The exec() function in Mongoose is used to execute a query and return a promise. It allows you to chain query methods and then execute the query at the end.

1
User.find({ name: 'Alice' }).exec();

You can run the query without exec(), by callback or using async/await.

1
2
3
User.find({ name: 'Alice' }, (error, users) => {
  console.log(users);
});
1
const users = await User.find({ name: 'Alice' });

What is the difference between findOne() and find() in Mongoose?

  • find(): Returns an array of all documents that match the query criteria.
  • findOne(): Returns the first document that matches the query criteria.

What is the difference between Model.create() and new Model().save() in Mongoose?

  • Model.create(): Creates a new document and saves it to the database in a single step.
1
User.create({ name: 'Alice' });
  • new Model().save(): reates a new instance of the model but doesn’t save it to the database immediately. You can modify the instance, perform validations, or run any other operations before calling .save() to persist the changes.
1
2
3
const doc = new Model({ name: 'John', age: 30 });
doc.age = 31; // Modify the document
await doc.save(); // Save the document after modification

What is the purpose of the lean() method in Mongoose queries, and when should it be used?

The lean() method in Mongoose queries returns plain JavaScript objects instead of Mongoose documents which come with a lot of additional features, such as getters, setters, and methods that are useful for working with the document . It should be used when you don’t need the full Mongoose document features and want to improve query performance.

1
User.find({ name: 'Alice' }).lean();

How to implement soft deletes in Mongoose?

Soft deletes in Mongoose involve marking documents as deleted instead of physically removing them from the database. You can achieve this by adding a deleted field to your schema and setting it to true when a document is deleted.

1
2
3
4
const userSchema = new mongoose.Schema({
  name: String,
  deleted: { type: Boolean, default: false }
});

Use pre middleware to exclude deleted documents from query results.

1
2
3
4
userSchema.pre(/^find/, function(next) {
  this.where({ deleted: false });
  next();
});

Add a method to “soft delete” a document.

1
2
3
4
userSchema.methods.softDelete = function() {
  this.deleted = true;
  return this.save();
};
This post is licensed under CC BY 4.0 by the author.